Local well-posedness for 3D micropolar fluid system in Besov-Morrey spaces

Lucas C. F. Ferreira

IMECC - UNICAMP 13083-859, Campinas, SP E-mail: lcff@ime.unicamp.br.

Juliana C. Precioso,

Depto Matemática, IBILCE, UNESP, 15054-000, São José do Rio Preto, SP E-mail: precioso@ibilce.unesp.br

Resumo: *We show a local-in-time existence result for the 3D micropolar fluid system in the framework of Besov-Morrey spaces. The initial data class is larger than the previous ones and contains strongly singular functions and measures.*

Palavras-chave: *Micropolar fluids, well-posedness, Besov-Morrey spaces*

1 Introduction

In this work we are concerned with a system of equations describing a viscous incompressible homogeneous micropolar fluid filling the whole space \mathbb{R}^3 and with density equal to one. This system was introduced by A.C. Eringer in [1] and can be used to model the behavior of some fluids under micro-rotation effects caused by rigid suspended particles in a viscous medium. Examples of those are polymeric fluids, animal blood, liquid crystals, ferro-liquids, and many others. These fluids cannot be modeled by only using Navier-Stokes equations due to the important role played by their microstructures which make them to be non-newtonian fluids with nonsymmetric stress tensor.

The initial value problem (IVP) for the micropolar system reads as

$$
\frac{\partial u}{\partial t} - (\chi + \nu)\Delta u + u \cdot \nabla u + \nabla \pi - 2\chi \nabla \times \omega = 0, \quad x \in \mathbb{R}^3, t > 0,
$$
\n(1.1)

$$
\frac{\partial \omega}{\partial t} - \mu \Delta \omega + u \cdot \nabla \omega + 4\chi \omega - \kappa \nabla (\nabla \cdot \omega) - 2\chi \nabla \times u = 0, \quad x \in \mathbb{R}^3, t > 0,
$$
\n(1.2)

$$
\nabla \cdot u = 0, \quad x \in \mathbb{R}^3, t > 0,
$$
\n
$$
(1.3)
$$

$$
u|_{t=0} = u_0, \ \nabla \cdot u_0 = 0 \text{ and } \omega|_{t=0} = \omega_0, \ x \in \mathbb{R}^3,
$$
 (1.4)

where the vector $u(x, t)$ is the linear velocity of the fluid, the scalar $\pi(x, t)$ represents the pressure, and $\omega(x, t)$ is the rotation velocity field of particles. The symbols $\nabla \cdot u$ and $\nabla \times u$ stand respectively for the divergence and rotational of the field *u*. The equations (1.1)-(1.3) are completed with Dirichlet conditions at infinity, that is, $u, \omega \to 0$ as $|x| \to \infty$. The fluid physical characteristics are determined by the constants ν, χ, κ, μ , where ν denotes the Newtonian viscosity and the parameters χ , κ , μ are viscosities related to the rotation field of particles ω (see [4]). The data u_0 and ω_0 are respectively the initial linear and rotation velocity. For simplicity of exposition, we assume $\chi = \nu = 1/2$ and $\kappa = \mu = 1$.

The micro-rotation influence on velocity field *u* disappears when $\chi = 0$ or $\omega = 0$ in (1.1)-(1.4), and then the 3D Navier–Stokes equations (3DNS) and their newtonian structure is recovered. We have a rich literature about existence of solutions for 3DNS in several frameworks, such as Lebesgue space L^p , weak $-L^p$ ($p \ge 3$), Morrey spaces $M_{p,\lambda}$ ($\lambda \in [0,3)$, $p \ge 3 - \lambda$), PM^a (2 ≤ *a* < 3), Besov spaces $B_{p,\infty}^{-k}$ (0 < *k* ≤ 1 − $\frac{3}{p}$ $\frac{3}{p}$), *BMO*^{-1} (0 < R ≤ ∞), Besov-Morrey spaces $N_{p,\lambda,\infty}^{-s}$ with $p \in [1,\infty)$, $0 \leq \lambda < 3$ and $0 < s \leq 1 - \frac{3-\lambda}{p}$, and some others. For $p = 1$, there is no an inclusion relation between BMO_R^{-1} and $N_{p,\lambda,\infty}^{-s}$ (see e.g. [5, p.18]) and they are maximal classes for local-in-time existence in the whole space \mathbb{R}^3 .

It is natural to wonder which of those existence results for 3DNS could be extended for a fluid under the effect of micro-rotations and with a non-newtonian structure.

The goal of this work is to prove a local well-posedness result in a new setting whose initial data class is maximal for existence of solutions for $(1.1)-(1.4)$. We consider the framework of Besov-Morrey spaces $N_{p,\lambda,\infty}^{-s}$ which contain strongly singular functions and measures supported in either points (Diracs), filaments or surfaces (see e.g. [2, Remark 3.3] for more details). This class is larger than the previous ones in view of the continuous inclusions

$$
L^p \subset \text{weak-}L^p \subset B_{q,\infty}^{-k} \subset N_{r,\lambda,\infty}^{-s} \text{ and } PM^a \subset B_{q,\infty}^{-k} \subset N_{r,\lambda,\infty}^{-s},\tag{1.5}
$$

when $\frac{3}{p} = 3 - a = k + \frac{n}{q} = s + \frac{n-\lambda}{r}$ (in other words, the spaces in (1.5) have the same scaling).

2 Preliminaries

2.1 Function spaces and definitions

For $1 \leq p < \infty$ and $0 \leq \lambda < n$, the local Morrey space $M_{p,\lambda} = M_{p,\lambda}(\mathbb{R}^n)$ is defined as

$$
M_{p,\lambda} = \left\{ f \in L_{loc}^p(\mathbb{R}^n) : ||f||_{p,\lambda} < \infty \right\},\tag{2.1}
$$

where

$$
||f||_{p,\lambda} = \sup_{x_0 \in \mathbb{R}^n, \ 0 < R \le 1} \left(R^{-\frac{\lambda}{p}} \, ||f||_{L^p(B_R(x_0))} \right) \tag{2.2}
$$

and $B_R(x_0) \subset \mathbb{R}^n$ is the open ball with center *x* and radius *R*. The space $M_{p,\lambda}$ endowed with *∥·∥p,λ* is a Banach space. When *p* = 1*, Mp,λ* should be understood as a space of Radon measures and the L^p -norm in (2.2) as the total variation of the measure f computed on $B_R(x_0)$.

Hölder inequality holds true in the framework of Morrey spaces. Precisely, if $1 \leq p_i \leq \infty$ and $0 \leq \lambda_i < n$ with $\frac{1}{p_3} = \frac{1}{p_1}$ $\frac{1}{p_1} + \frac{1}{p_2}$ *p*2 and $\frac{\lambda_3}{\lambda_3}$ $\frac{\lambda_3}{p_3} = \frac{\lambda_1}{p_1}$ $\frac{\lambda_1}{p_1} + \frac{\lambda_2}{p_2}$ $\frac{\gamma_2}{p_2}$, then

$$
||fg||_{p_3,\lambda_3} \le ||f||_{p_1,\lambda_1} ||g||_{p_2,\lambda_2}.
$$
\n(2.3)

Recalling the notation $M_{p,\lambda}^s = (-\Delta)^{-s/2} M_{p,\lambda}$ for Sobolev Morrey spaces, the inhomogeneous Besov-Morrey space $N_{p,\lambda,q}^s$ is the following interpolation space

$$
(M_{p,\lambda}^{s_1}, M_{p,\lambda}^{s_2})_{\theta,q} = N_{p,\lambda,q}^s,\tag{2.4}
$$

where $\theta \in (0,1)$ and $s = (1 - \theta)s_1 + \theta s_2$ with $s_1 \neq s_2$. In view of (2.4), the reiteration theorem implies that

$$
(N_{p,\lambda,q_1}^{s_1}, N_{p,\lambda,q_2}^{s_2})_{\theta,q} = N_{p,\lambda,q}^s,
$$
\n(2.5)

where $1 \le q, q_1, q_2 \le \infty$ with $q^{-1} = (1 - \theta)q_1^{-1} + \theta q_2^{-1}$ and $\theta \in (0, 1)$ *.*

The space $N_{p,\lambda,q}^s$ can be characterized via norms based on dyadic decompositions. For that matter, let $D_0 = {\xi \in \mathbb{R}^n : |\xi| < 1}$ and let $\varphi_0 \in \mathcal{S}(\mathbb{R}^n)$ be such that supp $(\widehat{\varphi}_0) \subset D_0$ and $\widehat{\varphi}_0(\xi) = 1$ if $|\xi| \leq \frac{2}{3}$. Define $\varphi_k = 2^{kn} \varphi_0(2^k \xi)$ and $\psi_k = \varphi_{k+1} - \varphi_k$ for all $k \in \{0\} \cup \mathbb{N}$. Then $\widehat{\varphi}_k(\xi) = \widehat{\varphi}_0(2^{-k}\xi), \,\widehat{\psi}_k = \widehat{\varphi}_{k+1} - \widehat{\varphi}_k, \, \text{supp}(\widehat{\psi}_k) \subset \{\xi \in \mathbb{R}^n : 2^{k-1} < |\xi| < 2^{k+1}\}\,\, \text{and}$

$$
\widehat{\varphi}_0 + \sum_{k=0}^{\infty} \widehat{\psi}_k(\xi) = 1, \text{ for all } \xi.
$$

For $f \in \mathcal{S}'$, consider the quantity $||f||_{N^s_{p,\lambda,q}}$ given by

$$
\begin{cases} \|\varphi_0 * f\|_{p,\lambda} + \left(\sum_{k=0}^{\infty} (2^{ks} \|\psi_k * f\|_{p,\lambda})^q\right)^{\frac{1}{q}}, \text{if } 1 \le p \le \infty, 1 \le q < \infty, s \in \mathbb{R}.\\ \|\varphi_0 * f\|_{p,\lambda} + \sup_{k \in \{0\} \cup \mathbb{N}} (2^{ks} \|\psi_k * f\|_{p,\lambda}), \text{if } 1 \le p \le \infty, q = \infty, s \in \mathbb{R}. \end{cases} (2.6)
$$

We have that

$$
N_{p,\lambda,q}^s = \{ f \in \mathcal{S}'(\mathbb{R}^n) : ||f||_{N_{p,\lambda,q}^s} < \infty \}
$$
\n
$$
(2.7)
$$

and the pair $(N_{p,\lambda,q}^s, \|\cdot\|_{N_{p,\lambda,q}^s})$ is a Banach space. The inclusion $N_{p,\lambda,q_1}^s \subset N_{p,\lambda,q_2}^s$ is continuous for $1 \leq q_1 \leq q_2 \leq \infty$, and

$$
N_{p,\lambda,1}^0 \subset M_{p,\lambda} \subset N_{p,\lambda,\infty}^0,\tag{2.8}
$$

for all $1 \leq p < \infty$ and $0 \leq \lambda < n$. Finally we recall the Sobolev type embedding

$$
N_{p_2,\lambda,q_2}^{s_2} \subset N_{p_1,\lambda,q_1}^{s_1}, \quad \text{for } p_1 > p_2 \text{ and } s_1 - \frac{n-\lambda}{p_1} = s_2 - \frac{n-\lambda}{p_2} \ . \tag{2.9}
$$

The following lemma can be found in [6] and gives estimates for some multiplier operators acting in $N_{p,\lambda,r}^s$.

Lemma 2.1. Let $m, s \in \mathbb{R}$, $1 \le p < \infty$, $0 \le \lambda < n$ and $1 \le r \le \infty$. Let $P(\xi) \in C^{[n/2]+1}(\mathbb{R}^n)$ *where* $\lbrack \cdot \rbrack$ *stands for the greatest integer function. Assume that there is* $A > 0$ *such that*

$$
\left|\frac{\partial^{|\alpha|}P}{\partial \xi^{\alpha}}(\xi)\right| \le A \langle \xi \rangle^{m-|\alpha|}, \text{ where } \langle \xi \rangle = (1+|\xi|^{2})^{1/2},
$$

for all $\xi \in \mathbb{R}^n$ and $|\alpha| \leq [n/2]+1$. Then the operator $P(D)$ is bounded from $N_{p,\lambda,r}^s$ to $N_{p,\lambda,r}^{s-m}$ and *satisfies the estimate*

 $||P(D)u||_{N_{p,\lambda,r}^{s-m}} \leq CA||u||_{N_{p,\lambda,r}^s},$

where $C > 0$ *is a constant depending only on* s, m, p, λ .

2.2 Mild solutions

Recall that we are considering $\chi = \nu = 1/2$ and $\kappa = \mu = 1$ in (1.1)-(1.4). After applying the Leray projector in (1.1), we obtain the system

$$
\begin{cases}\n\partial_t u - \Delta u - \nabla \times \omega + \mathbb{P}(u \cdot \nabla u) = 0 \\
\partial_t \omega - \Delta \omega + u \cdot \nabla \omega + 2\omega - \nabla(\nabla \cdot \omega) - \nabla \times u = 0 \\
u|_{t=0} = u_0, \ \nabla \cdot u_0 = 0, \text{ and } \omega|_{t=0} = \omega_0\n\end{cases} (2.10)
$$

The linearized one associated to (2.10) is

$$
\begin{cases}\n\partial_t u - \Delta u - \nabla \times \omega = 0 \\
\partial_t \omega - \Delta \omega + 2\omega - \nabla(\nabla \cdot \omega) - \nabla \times u = 0 \\
u|_{t=0} = u_0, \ \nabla \cdot u_0 = 0, \text{ and } \omega|_{t=0} = \omega_0\n\end{cases} (2.11)
$$

Proceeding as in [3], we apply the Fourier transform in (2.11) and use the notation $y = [u, \omega]$ in order to obtain

$$
\begin{cases}\n\partial_t \hat{y} + A(\xi)\hat{y} = 0 \\
\hat{y}(\xi, 0) = (\hat{u}_0, \hat{\omega}_0)\n\end{cases},
$$
\n(2.12)

where

$$
A(\xi) = \begin{pmatrix} |\xi|^2 I & B(\xi) \\ B(\xi) & R(\xi) + (|\xi|^2 + 2)I \end{pmatrix} = A_1(\xi) + A_2(\xi) + A_3(\xi), \tag{2.13}
$$

with

$$
A_1 = \begin{pmatrix} |\xi|^2 I & 0 \\ 0 & (|\xi|^2 + 2)I \end{pmatrix}, A_2 = \begin{pmatrix} 0 & B(\xi) \\ B(\xi) & 0 \end{pmatrix}, A_3 = \begin{pmatrix} 0 & 0 \\ 0 & R(\xi) \end{pmatrix}, \quad (2.14)
$$

and

$$
R(\xi) = \begin{pmatrix} \xi_1^2 & \xi_1\xi_2 & \xi_1\xi_3 \\ \xi_1\xi_2 & \xi_2^2 & \xi_2\xi_3 \\ \xi_1\xi_3 & \xi_2\xi_3 & \xi_3^2 \end{pmatrix} \text{ and } B(\xi) = i \begin{pmatrix} 0 & \xi_3 & -\xi_2 \\ -\xi_3 & 0 & -\xi_1 \\ \xi_2 & -\xi_1 & 0 \end{pmatrix}.
$$

For each $t \geq 0$, we define the operator $G_A(t)$ via Fourier variables by

$$
\widehat{G_A(t)y_0}(\xi) = e^{-A(\xi)t}\hat{y_0},\tag{2.15}
$$

where $A(\xi)$ has been defined in (2.13). From [3, inequality (20), p.1430] with $\gamma = \beta = 1$, we have the pointwise estimate

$$
\left|e^{-tA(\xi)}\right| \le Ce^{-|\xi|^2 t}.\tag{2.16}
$$

Notice that the family ${G_A(t)}_{t>0}$ is formally a semigroup and $y = [u, \omega] = G_A(t)y_0$ is the solution of the linearized problem (2.11). Then, according to Duhamel's principle, the problem (2.10) is formally equivalent to the integral system

$$
y(x,t) = G_A(t)y_0 - \int_0^t G_A(t-s)\mathbb{P}\nabla \cdot (u \otimes y)ds,\tag{2.17}
$$

where

$$
\mathbb{P}\nabla \cdot (u \otimes y) = [\mathbb{P}\nabla \cdot (u \otimes u), \nabla \cdot (u \otimes \omega)].
$$

Throughout this paper, solutions of (2.17) are called mild ones for $(1.1)-(1.4)$ (or for (2.10)).

3 Results

The purpose of this section is to state our existence result for the Cauchy problem (1.1)-(1.4). Given a vector space $X \subset (\mathcal{S}'(\mathbb{R}^3))^3$, we denote X^{σ} as the set of all $u \in X$ such that $div(u) = 0$ in $\mathcal{S}'(\mathbb{R}^3)$.

Let $\eta, \beta > 0$, $1 \le q < \infty$, $0 \le \lambda < 3$ and $\eta_0 = \frac{1}{2} - \frac{3-\lambda}{4q}$. Many times, spaces of scalar and vector functions will be denoted abusively in the same way, e.g. $N_{q,\lambda,\infty}^{-\beta} = (N_{q,\lambda,\infty}^{-\beta})^3$. Also, $N_{q,\lambda,\infty}^{-\beta,\sigma}$ stands for $((N_{q,\lambda,\infty}^{-\beta})^3)^{\sigma}$.

We will look for local-in-time mild solutions $[u(x, t), \omega(x, t)]$ in the class \mathcal{X}_T defined by

$$
\left\{ [u,\omega] \in BC\left((0,T); N_{q,\lambda,\infty}^{-\beta,\sigma} \times N_{q,\lambda,\infty}^{-\beta} \right) : [t^{\eta}u, t^{\eta}\omega] \in BC\left((0,T); (M_{2q,\lambda})^2 \right) \right\},\qquad(3.1)
$$

which is a Banach space with norm

$$
\left\|[u,\omega]\right\|_{\mathcal{X}_T} = \sup_{0 \le t \le T} \left\|[u(\cdot,t),\omega(\cdot,t)]\right\|_{N_{q,\lambda,\infty}^{-\beta}} + \sup_{0 \le t \le T} t^{\eta} \left\|[u(\cdot,t),\omega(\cdot,t)]\right\|_{2q,\lambda},\tag{3.2}
$$

where $\|[\cdot,\cdot]\|_{N^{-\beta}_{q,\lambda,\infty}} = \|[\cdot,\cdot]\|_{(N^{-\beta}_{q,\lambda,\infty})^2}$ and $\|[\cdot,\cdot]\|_{2q,\lambda} = \|[\cdot,\cdot]\|_{(M_{2q,\lambda})^2}$. The initial data is taken in the class

$$
[u_0, \omega_0] \in N_{q,\lambda,\infty}^{-\beta,\sigma} \times N_{q,\lambda,\infty}^{-\beta}.
$$
\n(3.3)

We are ready to state our well-posedness result.

Theorem 3.1. Assume that $1 \leq q < \infty$, $0 \leq \lambda < 3$, $0 < \beta < 1 - \frac{3-\lambda}{q}$ and $\frac{\beta}{2} + \frac{3-\lambda}{4q} \leq \eta <$ $\min\left\{\eta_0, \frac{\beta-1}{4} + \frac{1}{2}\right\}$ $\frac{1}{2}$. *Suppose that the initial data* $[u_0, \omega_0]$ *belongs to the class (3.3).*

- *(i) (Existence and uniqueness) There exists* $T > 0$ *such that* $(1.1)-(1.4)$ *has a mild solution* $y = [u, \omega] \in \mathcal{X}_T$, which is the unique one in a suitable closed ball \mathcal{B}_r of \mathcal{X}_T whose radius *r >* 0 *increases with the size of the initial data.*
- *(ii) (Continuous dependence)* The solution $[u, \omega]$ depends continuously on initial data $[u_0, \omega_0]$.

4 Proofs

In order to perform a contraction argument, we need to obtain estimates in Besov-Morrey spaces for the linear and bilinear terms of the integral equation (2.17). Let us start with core estimates for the semigroup ${G_A(t)}_{t>0}$.

4.1 Estimates for $G_A(t)$ in $N_{p,\lambda,r}^s$ -spaces

The next lemma gives estimates for $\{G_A(t)\}_{t\geq 0}$ on spaces $N_{p,\lambda,r}^s$. In particular, these operators are well defined in the setting of $N^s_{p,\lambda,r}$ -spaces.

Lemma 4.1. *Let* $s, \beta \in \mathbb{R}, s \leq \beta, 1 \leq q \leq \infty, 1 \leq r \leq \infty$ and $0 \leq \lambda < 3$. There exists a *constant C >* 0 *such that*

$$
||G_A(t)y||_{N^{\beta}_{q,\lambda,r}} \leq C(1+t)^2(1+t^{\frac{s-\beta}{2}}) ||y||_{N^s_{q,\lambda,r}}, \qquad (4.1)
$$

for all $t > 0$ *and* $y \in N_{q,\lambda,r}^s$ *. Furthermore, if* $s < \beta$ *, then*

$$
||G_A(t)y||_{N^{\beta}_{q,\lambda,1}} \leq C(1+t)^2(1+t^{\frac{s-\beta}{2}}) ||y||_{N^s_{q,\lambda,\infty}},
$$
\n(4.2)

for all $t > 0$ *and* $y \in N^s_{q, \lambda, \infty}$.

4.2 Bilinear estimates

In the remainder of this work, we use the following notation for the bilinear operator appearing in (2.17)

$$
B(y_1, y_2) = -\int_0^t G_A(t - s) \mathbb{P} \nabla \cdot (u_1 \otimes y_2) ds,
$$
 (4.3)

where $y_1 = [u_1, \omega_1], y_2 = [u_2, \omega_2]$.

Lemma 4.2. Let $0 < T < \infty$. Under the hypotheses of Theorem 3.1, there exist constants $K_1 = K_1(T), K_2 = K_2(T) > 0$ *such that*

$$
\sup_{0(4.4)
$$

$$
\sup_{0
$$

for all $y_1, y_2 \in \mathcal{X}_T$ *. Moreover,* $K_i(T) \to 0^+$ *as* $T \to 0^+$ *, for* $i = 1, 2$ *.*

4.3 Proof of Theorem 3.1.

Part (i): Recall the notation $B(\cdot, \cdot)$ in (4.3). Lemma 4.2 yields

$$
\|B(y,z)\|_{\mathcal{X}_T} = \sup_{0 < t < T} \|B(y,z)\|_{N_{q,\lambda,\infty}^{-\beta}} + \sup_{0 < t < T} t^{\eta} \|B(y,z)\|_{2q,\lambda}
$$
\n
$$
\leq (K_1(T) + K_2(T)) \left(\sup_{0 < t < T} t^{\eta} \|y(\cdot,t)\|_{2q,\lambda} \sup_{0 < t < T} t^{\eta} \|z(\cdot,t)\|_{2q,\lambda} \right)
$$
\n
$$
\leq K(T) \|y\|_{\mathcal{X}_T} \|z\|_{\mathcal{X}_T}, \tag{4.6}
$$

where $K(T) = K_1(T) + K_2(T)$.

Let $\tau_{q,\lambda} = \frac{3-\lambda}{q}$. Using the inclusion $N_{q,\lambda,1}^0 \hookrightarrow M_{q,\lambda}$ (see (2.8)), Sobolev type embedding (2.9), and Lemma 4.1, we obtain

$$
||G_{A}(t)y_{0}||_{\mathcal{X}_{T}} = \sup_{0 < t < T} ||G_{A}(t)y_{0}||_{N_{q,\lambda,\infty}^{-\beta}} + \sup_{0 < t < T} t^{\eta} ||G_{A}(t)y_{0}||_{2q,\lambda}
$$

\n
$$
\leq 2C(1+T)^{2} \sup_{0 < t < T} ||y_{0}||_{N_{q,\lambda,\infty}^{-\beta}} + C \sup_{0 < t < T} t^{\eta} ||G_{A}(t)y_{0}||_{N_{2q,\lambda,1}^{0}}
$$

\n
$$
\leq 2C(1+T)^{2} \sup_{0 < t < T} ||y_{0}||_{N_{q,\lambda,\infty}^{-\beta}} + C \sup_{0 < t < T} t^{\eta} ||G_{A}(t)y_{0}||_{N_{2q,\lambda,1}^{-\alpha}}
$$

\n
$$
\leq 2C(1+T)^{2} \sup_{0 < t < T} ||y_{0}||_{N_{q,\lambda,\infty}^{-\beta}}
$$

\n+ C $\sup_{0 < t < T} t^{\eta} (1+t)^{2} (1+t^{-\frac{\tau_{q,\lambda}}{4} - \frac{\beta}{2}}) ||y_{0}||_{N_{q,\lambda,\infty}^{-\beta}}$
\n
$$
\leq C(1+T)^{2} \left(2 + \left(T^{\eta} + T^{\eta - \frac{\tau_{q,\lambda}}{4} - \frac{\beta}{2}}\right) ||y_{0}||_{N_{q,\lambda,\infty}^{-\beta}}
$$

\n
$$
= C_{T} ||y_{0}||_{N_{q,\lambda,\infty}^{-\beta}}, \qquad (4.7)
$$

because $\eta \geq \frac{\beta}{2} + \frac{\tau_{q,\lambda}}{4}$ $\frac{q,\lambda}{4}$. Consider the map Φ defined by

$$
\Phi(y) = G_A(t)y_0 + B(y, y). \tag{4.8}
$$

Let $T > 0$ and $\mathcal{B}_r = \{y \in \mathcal{X}_T; \|u\|_{\mathcal{X}_T} \leq 2r\}$ where

$$
r = C_T \|y_0\|_{N_{q,\lambda,\infty}^{-\beta}},\tag{4.9}
$$

and C_T is as in (4.7). Since $K_i(T) \to 0^+$ as $T \to 0^+$ and $K(T) = K_1(T) + K_2(T)$, we can choose $T > 0$ such that

$$
4K(T)r = 4K(T)C_T ||y_0||_{N_{q,\lambda,\infty}^{-\beta}}
$$

= $C ||y_0||_{N_{q,\lambda,\infty}^{-\beta}} 4(1+T)^2 \left(2 + \left(T^{\eta} + T^{\eta - \frac{\tau_{q,\lambda}}{4} - \frac{\beta}{2}}\right)\right) K(T) < 1.$

It follows from bilinearity and (4.6) that

$$
\|\Phi(y) - \Phi(z)\|_{\mathcal{X}_T} = \|B(y, y) - B(z, z)\|_{\mathcal{X}_T} \le K \|y - z\|_{\mathcal{X}_T} (\|y\|_{\mathcal{X}_T} + \|z\|_{\mathcal{X}_T})
$$
\n(4.10)

$$
\leq 4rK(T)\|y-z\|_{\mathcal{X}_T},\tag{4.11}
$$

for all $y, z \in \mathcal{B}_r$. Also, using the inequality (4.10) with $z = 0$, we get

$$
\|\Phi(y)\|_{\mathcal{X}_T} \le \|\Phi(0)\|_{\mathcal{X}_T} + \|\Phi(y) - \Phi(0)\|_{\mathcal{X}_T} \n\le \|G_A(t)u_0\|_{\mathcal{X}_T} + K\|y\|_{\mathcal{X}_T}^2 \n\le r + 4r^2 K(T) \le 2r, \text{ for } y \in \mathcal{B}_r,
$$
\n(4.12)

because $4K(T)r < 1$. The estimates (4.11) and (4.12) show that $\Phi : \mathcal{B}_r \to \mathcal{B}_r$ is a contraction and has a unique fixed point in \mathcal{B}_r . This one is the unique solution $y(x, t)$ for the integral equation (2.17) satisfying $||y||_{\mathcal{X}_T} \leq 2r$.

Part (ii): Let y_1, y_2 be two solutions obtained in *item (i)* with respective data $y_{0,1}, y_{0,2}$ and existence times T_1, T_2 . We have that $||y_1||_{\mathcal{X}_{T_1}} \leq 2r_1$ and $||y_2||_{\mathcal{X}_{T_2}} \leq 2r_2$, where $r_i = C_{T_i} ||y_i||_{N_i^{-\beta}}$ (see (4.9)) and $0 < 4K(T_i)r_i < 1$. Since $K(T)$ decreases with $T > 0$, we have that $0 < 4K(T)r_i <$ 1, for $i = 1, 2$, and $T = \min\{T_1, T_2\}$. Thus, taking $r = \max\{r_1, r_2\}$, note that $0 < 4K(T)r < 1$.

Now, using (4.11), it follows that

$$
||y_1 - y_2||_{\mathcal{X}_T} = ||G_A(t)y_{0,1} - G_A(t)y_{0,2} + B(y_1, y_1) - B(y_2, y_2)||_{\mathcal{X}_T}
$$

\n
$$
\leq ||G_A(t)(y_{0,1} - y_{0,2})||_{\mathcal{X}_T} + K(T)||y_1 - y_2||_{\mathcal{X}_T} (||y_1||_{\mathcal{X}_T} + ||y_2||_{\mathcal{X}_T})
$$

\n
$$
\leq C_T ||y_{0,1} - y_{0,2}||_{N_{q,\lambda,\infty}^{-\beta}} + 2(r_1 + r_2)K(T)||y_1 - y_2||_{\mathcal{X}_T}
$$

\n
$$
\leq C_T ||y_{0,1} - y_{0,2}||_{N_{q,\lambda,\infty}^{-\beta}} + 4rK(T)||y_1 - y_2||_{\mathcal{X}_T},
$$

and then

$$
||y_1 - y_2||_{\mathcal{X}_T} \le \frac{C_T}{1 - 4rK(T)} ||y_{0,1} - y_{0,2}||_{N_{q,\lambda,\infty}^{-\beta}},
$$

which implies the desired continuity of the data-solution map. \Box

References

- [1] A. C. Eringen, Theory of micropolar fluids. J. Math. Mech. 16 (1966) 1-18.
- [2] L.C.F. Ferreira, J.C. Precioso, Existence and asymptotic behaviour for the parabolicparabolic Keller-Segel system with singular data, Nonlinearity 24 (5) (2011), 1433-1449.
- [3] L. C. F. Ferreira, E. J. Villamizar-Roa, Micropolar fluid system in a space of distributions and large time behavior, J. Math. Anal. Appl 332 (2007), 1424-1444.
- [4] G. Lukaszewicz, Micropolar Fluids, theory and applications, modeling and simulation in science, Engineering and Technology, Birkhäuser, Boston, (1999).
- [5] A.L. Mazzucato, Besov-Morrey spaces: function space theory and applications to non-linear PDE, Trans. Amer. Math. Soc. 355 (4) (2003), 1297-1364.
- [6] H. Kozono and Y. Hideo, Semilinear heat equations and the Navier-Stokes equation with distributions in new function spaces as initial data, Comm. Partial Differential Equations 19 (5-6) (1994), 959-1014.