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framework of Besov-Morrey spaces. The initial data class is larger than the previous ones and
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1 Introduction

In this work we are concerned with a system of equations describing a viscous incompressible
homogeneous micropolar fluid filling the whole space R3 and with density equal to one. This
system was introduced by A.C. Eringer in [1] and can be used to model the behavior of some fluids
under micro-rotation effects caused by rigid suspended particles in a viscous medium. Examples
of those are polymeric fluids, animal blood, liquid crystals, ferro-liquids, and many others. These
fluids cannot be modeled by only using Navier-Stokes equations due to the important role played
by their microstructures which make them to be non-newtonian fluids with nonsymmetric stress
tensor.

The initial value problem (IVP) for the micropolar system reads as

∂u

∂t
− (χ+ ν)∆u+ u · ∇u+∇π − 2χ∇× ω = 0, x ∈ R3, t > 0, (1.1)

∂ω

∂t
− µ∆ω + u · ∇ω + 4χω − κ∇(∇ · ω)− 2χ∇× u = 0, x ∈ R3, t > 0, (1.2)

∇ · u = 0, x ∈ R3, t > 0, (1.3)

u|t=0 = u0, ∇ · u0 = 0 and ω|t=0 = ω0, x ∈ R3, (1.4)

where the vector u(x, t) is the linear velocity of the fluid, the scalar π(x, t) represents the
pressure, and ω(x, t) is the rotation velocity field of particles. The symbols ∇ · u and ∇ × u
stand respectively for the divergence and rotational of the field u. The equations (1.1)-(1.3)
are completed with Dirichlet conditions at infinity, that is, u, ω → 0 as |x| → ∞. The fluid
physical characteristics are determined by the constants ν, χ, κ, µ, where ν denotes the Newtonian
viscosity and the parameters χ, κ, µ are viscosities related to the rotation field of particles ω (see
[4]). The data u0 and ω0 are respectively the initial linear and rotation velocity. For simplicity
of exposition, we assume χ = ν = 1/2 and κ = µ = 1.
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The micro-rotation influence on velocity field u disappears when χ = 0 or ω = 0 in (1.1)-(1.4),
and then the 3D Navier–Stokes equations (3DNS) and their newtonian structure is recovered.
We have a rich literature about existence of solutions for 3DNS in several frameworks, such
as Lebesgue space Lp, weak−Lp (p ≥ 3), Morrey spaces Mp,λ (λ ∈ [0, 3 ), p ≥ 3 − λ), PMa

(2 ≤ a < 3), Besov spaces B−k
p,∞ ( 0 < k ≤ 1− 3

p), BMO−1
R (0 < R ≤ ∞), Besov-Morrey spaces

N−s
p,λ,∞ with p ∈ [1,∞), 0 ≤ λ < 3 and 0 < s ≤ 1 − 3−λ

p , and some others. For p = 1, there is

no an inclusion relation between BMO−1
R and N−s

p,λ,∞ (see e.g. [5, p.18]) and they are maximal

classes for local-in-time existence in the whole space R3.
It is natural to wonder which of those existence results for 3DNS could be extended for a

fluid under the effect of micro-rotations and with a non-newtonian structure.
The goal of this work is to prove a local well-posedness result in a new setting whose initial

data class is maximal for existence of solutions for (1.1)-(1.4). We consider the framework of
Besov-Morrey spaces N−s

p,λ,∞ which contain strongly singular functions and measures supported
in either points (Diracs), filaments or surfaces (see e.g. [2, Remark 3.3] for more details). This
class is larger than the previous ones in view of the continuous inclusions

Lp ⊂ weak-Lp ⊂ B−k
q,∞ ⊂ N−s

r,λ,∞ and PMa ⊂ B−k
q,∞ ⊂ N−s

r,λ,∞, (1.5)

when 3
p = 3− a = k+ n

q = s+ n−λ
r ( in other words, the spaces in (1.5) have the same scaling).

2 Preliminaries

2.1 Function spaces and definitions

For 1 ≤ p <∞ and 0 ≤ λ < n, the local Morrey space Mp,λ =Mp,λ(Rn) is defined as

Mp,λ =
{
f ∈ Lp

loc(R
n) : ∥f∥p,λ <∞

}
, (2.1)

where
∥f∥p,λ = sup

x0∈Rn, 0<R≤1

(
R

−λ
p ∥f∥Lp(BR(x0))

)
(2.2)

and BR(x0) ⊂ Rn is the open ball with center x and radius R. The space Mp,λ endowed with
∥·∥p,λ is a Banach space. When p = 1, Mp,λ should be understood as a space of Radon measures
and the Lp-norm in (2.2) as the total variation of the measure f computed on BR(x0).

Hölder inequality holds true in the framework of Morrey spaces. Precisely, if 1 ≤ pi ≤ ∞
and 0 ≤ λi < n with

1

p3
=

1

p1
+

1

p2
and

λ3
p3

=
λ1
p1

+
λ2
p2
, then

∥fg∥p3,λ3
≤ ∥f∥p1,λ1

∥g∥p2,λ2
. (2.3)

Recalling the notationM s
p,λ = (−∆)−s/2Mp,λ for Sobolev Morrey spaces, the inhomogeneous

Besov-Morrey space N s
p,λ,q is the following interpolation space

(M s1
p,λ,M

s2
p,λ)θ,q = N s

p,λ,q, (2.4)

where θ ∈ (0, 1) and s = (1− θ)s1 + θs2 with s1 ̸= s2. In view of (2.4), the reiteration theorem
implies that

(N s1
p,λ,q1

, N s2
p,λ,q2

)θ,q = N s
p,λ,q, (2.5)

where 1 ≤ q, q1, q2 ≤ ∞ with q−1 = (1− θ)q−1
1 + θq−1

2 and θ ∈ (0, 1).
The space N s

p,λ,q can be characterized via norms based on dyadic decompositions. For that
matter, let D0 = {ξ ∈ Rn : |ξ| < 1} and let φ0 ∈ S(Rn) be such that supp(φ̂0) ⊂ D0 and
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φ̂0(ξ) = 1 if |ξ| ≤ 2
3 . Define φk = 2knφ0(2

kξ) and ψk = φk+1 − φk for all k ∈ {0} ∪ N. Then

φ̂k(ξ) = φ̂0(2
−kξ), ψ̂k = φ̂k+1 − φ̂k, supp(ψ̂k) ⊂ {ξ ∈ Rn : 2k−1 < |ξ| < 2k+1} and

φ̂0 +

∞∑
k=0

ψ̂k(ξ) = 1, for all ξ.

For f ∈ S ′
, consider the quantity ∥f∥Ns

p,λ,q
given by ∥φ0 ∗ f∥p,λ +

( ∞∑
k=0

(2ks ∥ψk ∗ f∥p,λ)q
) 1

q

, if 1 ≤ p ≤ ∞, 1 ≤ q <∞, s ∈ R.

∥φ0 ∗ f∥p,λ + supk∈{0}∪N(2
ks ∥ψk ∗ f∥p,λ) , if 1 ≤ p ≤ ∞, q = ∞, s ∈ R.

(2.6)

We have that
N s

p,λ,q = {f ∈ S ′(Rn) : ∥f∥Ns
p,λ,q

<∞} (2.7)

and the pair (N s
p,λ,q, ∥·∥Ns

p,λ,q
) is a Banach space. The inclusion N s

p,λ,q1
⊂ N s

p,λ,q2
is continuous

for 1 ≤ q1 ≤ q2 ≤ ∞, and
N0

p,λ,1 ⊂Mp,λ ⊂ N0
p,λ,∞, (2.8)

for all 1 ≤ p <∞ and 0 ≤ λ < n. Finally we recall the Sobolev type embedding

N s2
p2,λ,q2

⊂ N s1
p1,λ,q1

, for p1 > p2 and s1 −
n− λ

p1
= s2 −

n− λ

p2
. (2.9)

The following lemma can be found in [6] and gives estimates for some multiplier operators
acting in N s

p,λ,r.

Lemma 2.1. Let m, s ∈ R, 1 ≤ p < ∞, 0 ≤ λ < n and 1 ≤ r ≤ ∞. Let P (ξ) ∈ C [n/2]+1(Rn)
where [·] stands for the greatest integer function. Assume that there is A > 0 such that∣∣∣∣∣∂|α|P∂ξα

(ξ)

∣∣∣∣∣ ≤ A ⟨ξ⟩m−|α| , where ⟨ξ⟩ = (1 + |ξ|2)1/2,

for all ξ ∈ Rn and |α| ≤ [n/2] + 1.Then the operator P (D) is bounded from N s
p,λ,r to N s−m

p,λ,r and
satisfies the estimate

∥P (D)u∥Ns−m
p,λ,r

≤ CA∥u∥Ns
p,λ,r

,

where C > 0 is a constant depending only on s,m, p, λ.

2.2 Mild solutions

Recall that we are considering χ = ν = 1/2 and κ = µ = 1 in (1.1)-(1.4). After applying the
Leray projector in (1.1), we obtain the system

∂tu−∆u−∇× ω + P(u · ∇u) = 0
∂tω −∆ω + u · ∇ω + 2ω −∇(∇ · ω)−∇× u = 0
u|t=0 = u0, ∇ · u0 = 0, and ω|t=0 = ω0

. (2.10)

The linearized one associated to (2.10) is
∂tu−∆u−∇× ω = 0
∂tω −∆ω + 2ω −∇(∇ · ω)−∇× u = 0
u|t=0 = u0, ∇ · u0 = 0, and ω|t=0 = ω0

. (2.11)
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Proceeding as in [3], we apply the Fourier transform in (2.11) and use the notation y = [u, ω] in
order to obtain {

∂tŷ +A(ξ)ŷ = 0
ŷ(ξ, 0) = (û0, ω̂0)

, (2.12)

where

A(ξ) =

 |ξ|2I B(ξ)
B(ξ) R(ξ) + (|ξ|2 + 2)I

 = A1(ξ) +A2(ξ) +A3(ξ), (2.13)

with

A1 =

 |ξ|2I 0
0 (|ξ|2 + 2)I

 , A2 =

 0 B(ξ)
B(ξ) 0

 , A3 =

 0 0
0 R(ξ)

 , (2.14)

and

R(ξ) =


ξ21 ξ1ξ2 ξ1ξ3
ξ1ξ2 ξ22 ξ2ξ3
ξ1ξ3 ξ2ξ3 ξ23

 and B(ξ) = i


0 ξ3 −ξ2

−ξ3 0 −ξ1
ξ2 −ξ1 0

 .

For each t ≥ 0, we define the operator GA(t) via Fourier variables by

ĜA(t)y0(ξ) = e−A(ξ)tŷ0, (2.15)

where A(ξ) has been defined in (2.13). From [3, inequality (20), p.1430] with γ = β = 1, we
have the pointwise estimate ∣∣∣e−tA(ξ)

∣∣∣ ≤ Ce−|ξ|2t. (2.16)

Notice that the family {GA(t)}t≥0 is formally a semigroup and y = [u, ω] = GA(t)y0 is the
solution of the linearized problem (2.11). Then, according to Duhamel’s principle, the problem
(2.10) is formally equivalent to the integral system

y(x, t) = GA(t)y0 −
∫ t

0
GA(t− s)P∇ · (u⊗ y)ds, (2.17)

where
P∇ · (u⊗ y) = [P∇ · (u⊗ u),∇ · (u⊗ ω)].

Throughout this paper, solutions of (2.17) are called mild ones for (1.1)-(1.4) (or for (2.10)).

3 Results

The purpose of this section is to state our existence result for the Cauchy problem (1.1)-(1.4).

Given a vector space X ⊂
(
S ′(R3)

)3
, we denote Xσ as the set of all u ∈ X such that div(u) = 0

in S ′(R3).
Let η, β > 0, 1 ≤ q < ∞, 0 ≤ λ < 3 and η0 = 1

2 − 3−λ
4q . Many times, spaces of scalar

and vector functions will be denoted abusively in the same way, e.g. N−β
q,λ,∞ = (N−β

q,λ,∞)3. Also,

N−β,σ
q,λ,∞ stands for ((N−β

q,λ,∞)3)σ.
We will look for local-in-time mild solutions [u(x, t), ω(x, t)] in the class XT defined by{

[u, ω] ∈ BC
(
(0, T );N−β,σ

q,λ,∞ ×N−β
q,λ,∞

)
: [tηu, tηω] ∈ BC

(
(0, T ); (M2q,λ)

2
)}
, (3.1)

which is a Banach space with norm

∥[u, ω]∥XT
= sup

0<t<T
∥[u(·, t), ω(·, t)]∥

N−β
q,λ,∞

+ sup
0<t<T

tη ∥[u(·, t), ω(·, t)]∥2q,λ , (3.2)
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where ∥[·, ·]∥
N−β

q,λ,∞
= ∥[·, ·]∥

(N−β
q,λ,∞)2

and ∥[·, ·]∥2q,λ = ∥[·, ·]∥(M2q,λ)2
.

The initial data is taken in the class

[u0, ω0] ∈ N−β,σ
q,λ,∞ ×N−β

q,λ,∞. (3.3)

We are ready to state our well-posedness result.

Theorem 3.1. Assume that 1 ≤ q < ∞, 0 ≤ λ < 3, 0 < β < 1 − 3−λ
q and β

2 + 3−λ
4q ≤ η <

min
{
η0,

β−1
4 + 1

2

}
. Suppose that the initial data [u0, ω0] belongs to the class (3.3).

(i) (Existence and uniqueness) There exists T > 0 such that (1.1)-(1.4) has a mild solution
y = [u, ω] ∈ XT , which is the unique one in a suitable closed ball Br of XT whose radius
r > 0 increases with the size of the initial data.

(ii) (Continuous dependence) The solution [u, ω] depends continuously on initial data [u0, ω0].

4 Proofs

In order to perform a contraction argument, we need to obtain estimates in Besov-Morrey spaces
for the linear and bilinear terms of the integral equation (2.17). Let us start with core estimates
for the semigroup {GA(t)}t≥0.

4.1 Estimates for GA(t) in N s
p,λ,r-spaces

The next lemma gives estimates for {GA(t)}t≥0 on spaces N s
p,λ,r. In particular, these operators

are well defined in the setting of N s
p,λ,r-spaces.

Lemma 4.1. Let s, β ∈ R, s ≤ β, 1 ≤ q ≤ ∞, 1 ≤ r ≤ ∞ and 0 ≤ λ < 3. There exists a
constant C > 0 such that

∥GA(t)y∥Nβ
q,λ,r

≤ C(1 + t)2(1 + t
s−β
2 ) ∥y∥Ns

q,λ,r
, (4.1)

for all t > 0 and y ∈ N s
q,λ,r. Furthermore, if s < β, then

∥GA(t)y∥Nβ
q,λ,1

≤ C(1 + t)2(1 + t
s−β
2 ) ∥y∥Ns

q,λ,∞
, (4.2)

for all t > 0 and y ∈ N s
q,λ,∞.

4.2 Bilinear estimates

In the remainder of this work, we use the following notation for the bilinear operator appearing
in (2.17)

B(y1, y2) = −
∫ t

0
GA(t− s)P∇ · (u1 ⊗ y2)ds, (4.3)

where y1 = [u1, ω1], y2 = [u2, ω2].

Lemma 4.2. Let 0 < T < ∞. Under the hypotheses of Theorem 3.1, there exist constants
K1 = K1(T ),K2 = K2(T ) > 0 such that

sup
0<t<T

∥B(y1, y2)∥N−β
q,λ,∞

≤ K1 sup
0<t<T

tη ∥y1(·, t)∥2q,λ sup
0<t<T

tη||y2(·, t)||2q,λ, (4.4)

sup
0<t<T

tη ∥B(y1, y2)∥2q,λ ≤ K2 sup
0<t<T

tη ∥y1(·, t)∥2q,λ sup
0<t<T

tη||y2(·, t)||2q,λ, (4.5)

for all y1, y2 ∈ XT . Moreover, Ki(T ) → 0+ as T → 0+, for i = 1, 2.
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4.3 Proof of Theorem 3.1.

Part (i): Recall the notation B(·, ·) in (4.3). Lemma 4.2 yields

∥B(y, z)∥XT
= sup

0<t<T
∥B(y, z)∥

N−β
q,λ,∞

+ sup
0<t<T

tη ∥B(y, z)∥2q,λ

≤ (K1(T ) +K2(T ))

(
sup

0<t<T
tη ∥y(·, t)∥2q,λ sup

0<t<T
tη ∥z(·, t)∥2q,λ

)
≤ K(T ) ∥y∥XT

∥z∥XT
, (4.6)

where K(T ) = K1(T ) +K2(T ).
Let τq,λ = 3−λ

q . Using the inclusion N0
q,λ,1 ↪→Mq,λ (see (2.8)), Sobolev type embedding (2.9),

and Lemma 4.1, we obtain

∥GA(t)y0∥XT
= sup

0<t<T
∥GA(t)y0∥N−β

q,λ,∞
+ sup

0<t<T
tη ∥GA(t)y0∥2q,λ

≤ 2C(1 + T )2 sup
0<t<T

∥y0∥N−β
q,λ,∞

+ C sup
0<t<T

tη ∥GA(t)y0∥N0
2q,λ,1

≤ 2C(1 + T )2 sup
0<t<T

∥y0∥N−β
q,λ,∞

+ C sup
0<t<T

tη ∥GA(t)y0∥
N

τq,λ
2

q,λ,1

≤ 2C(1 + T )2 sup
0<t<T

∥y0∥N−β
q,λ,∞

+ C sup
0<t<T

tη(1 + t)2(1 + t−
τq,λ
4

−β
2 ) ∥y0∥N−β

q,λ,∞

≤ C(1 + T )2
(
2 +

(
T η + T η−

τq,λ
4

−β
2

))
∥y0∥N−β

q,λ,∞

= CT ∥y0∥N−β
q,λ,∞

, (4.7)

because η ≥ β
2 +

τq,λ
4 . Consider the map Φ defined by

Φ(y) = GA(t)y0 +B(y, y). (4.8)

Let T > 0 and Br = {y ∈ XT ; ∥u∥XT
≤ 2r} where

r = CT ∥y0∥N−β
q,λ,∞

, (4.9)

and CT is as in (4.7). Since Ki(T ) → 0+ as T → 0+ and K(T ) = K1(T )+K2(T ), we can choose
T > 0 such that

4K(T )r = 4K(T )CT ∥y0∥N−β
q,λ,∞

= C ∥y0∥N−β
q,λ,∞

4(1 + T )2
(
2 +

(
T η + T η−

τq,λ
4

−β
2

))
K(T ) < 1.

It follows from bilinearity and (4.6) that

∥Φ(y)− Φ(z)∥XT
= ∥B(y, y)−B(z, z)∥XT

≤ K∥y − z∥XT
(∥y∥XT

+ ∥z∥XT
) (4.10)

≤ 4rK(T )∥y − z∥XT
, (4.11)

for all y, z ∈ Br. Also, using the inequality (4.10) with z = 0, we get

∥Φ(y)∥XT
≤ ∥Φ(0)∥XT

+ ∥Φ(y)− Φ(0)∥XT

≤ ∥GA(t)u0∥XT
+K∥y∥2XT

≤ r + 4r2K(T ) ≤ 2r, for y ∈ Br, (4.12)
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because 4K(T )r < 1. The estimates (4.11) and (4.12) show that Φ : Br → Br is a contraction and
has a unique fixed point in Br. This one is the unique solution y(x, t) for the integral equation
(2.17) satisfying ∥y∥XT

≤ 2r.
Part (ii): Let y1, y2 be two solutions obtained in item (i) with respective data y0,1, y0,2 and

existence times T1, T2.We have that ∥y1∥XT1
≤ 2r1 and ∥y2∥XT2

≤ 2r2, where ri = CTi ∥yi∥N−β
q,λ,∞

(see (4.9)) and 0 < 4K(Ti)ri < 1. SinceK(T ) decreases with T > 0, we have that 0 < 4K(T )ri <
1, for i = 1, 2, and T = min{T1, T2}. Thus, taking r = max{r1, r2}, note that 0 < 4K(T )r < 1.

Now, using (4.11), it follows that

∥y1 − y2∥XT
= ∥GA(t)y0,1 −GA(t)y0,2 +B(y1, y1)−B(y2, y2)∥XT

≤ ∥GA(t)(y0,1 − y0,2)∥XT
+K(T )∥y1 − y2∥XT

(∥y1∥XT
+ ∥y2∥XT

)

≤ CT ∥y0,1 − y0,2∥N−β
q,λ,∞

+ 2(r1 + r2)K(T )∥y1 − y2∥XT

≤ CT ∥y0,1 − y0,2∥N−β
q,λ,∞

+ 4rK(T )∥y1 − y2∥XT
,

and then

∥y1 − y2∥XT
≤ CT

1− 4rK(T )
∥y0,1 − y0,2∥N−β

q,λ,∞
,

which implies the desired continuity of the data-solution map. �
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