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Resumo: We show a local-in-time existence result for the 3D micropolar fluid system in the
framework of Besov-Morrey spaces. The initial data class is larger than the previous ones and
contains strongly singular functions and measures.
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1 Introduction

In this work we are concerned with a system of equations describing a viscous incompressible
homogeneous micropolar fluid filling the whole space R® and with density equal to one. This
system was introduced by A.C. Eringer in [1] and can be used to model the behavior of some fluids
under micro-rotation effects caused by rigid suspended particles in a viscous medium. Examples
of those are polymeric fluids, animal blood, liquid crystals, ferro-liquids, and many others. These
fluids cannot be modeled by only using Navier-Stokes equations due to the important role played
by their microstructures which make them to be non-newtonian fluids with nonsymmetric stress
tensor.
The initial value problem (IVP) for the micropolar system reads as

?;Z—(X+V)Au+u~Vu+V7r—2Xvxw:O, z€R3t >0, (1.1)
g(:—,qu—Fu-Vw—Hlxw—mV(V-w)—2Xvxu:0, zeR3t>0, (1.2)

V-u=0, zeR¢t>0,

uli—o = up, V- ug =0 and wli—g = wo, = € R?,

where the vector u(z,t) is the linear velocity of the fluid, the scalar m(z,t) represents the
pressure, and w(z,t) is the rotation velocity field of particles. The symbols V -« and V x u
stand respectively for the divergence and rotational of the field u. The equations (1.1)-(1.3)
are completed with Dirichlet conditions at infinity, that is, u,w — 0 as |z| — oco. The fluid
physical characteristics are determined by the constants v, x, s, u, where v denotes the Newtonian
viscosity and the parameters y, k, u are viscosities related to the rotation field of particles w (see
[4]). The data up and wg are respectively the initial linear and rotation velocity. For simplicity
of exposition, we assume y =v =1/2 and k = p = 1.
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The micro-rotation influence on velocity field v disappears when y = 0 or w = 0in (1.1)-(1.4),
and then the 3D Navier-Stokes equations (3DNS) and their newtonian structure is recovered.
We have a rich literature about existence of solutions for 3DNS in several frameworks, such
as Lebesgue space LP, weak—LP (p > 3), Morrey spaces M, (A € [0,3), p > 3 — ), PM*
(2 < a < 3), Besov spaces Bp_go (0<k<1- %), BMOR' (0 < R < 00), Besov-Morrey spaces

Np;oo with p € [1,00), 0 < A < 3 and0< s < 1—ﬁ, and some others. For p = 1, there is

no an inclusion relation between BM O3 n and N (see e.g. [, p.18]) and they are maximal

P, /\ ,00
classes for local-in-time existence in the whole space R3.

It is natural to wonder which of those existence results for 3DNS could be extended for a
fluid under the effect of micro-rotations and with a non-newtonian structure.

The goal of this work is to prove a local well-posedness result in a new setting whose initial
data class is maximal for existence of solutions for (1.1)-(1.4). We consider the framework of
Besov-Morrey spaces N ) oo Which contain strongly singular functions and measures supported
in either points (Dlracs) ﬁlaments or surfaces (see e.g. [2, Remark 3.3] for more details). This
class is larger than the previous ones in view of the continuous inclusions

LP C weak-LP C B; C N7

7,,00

and PM*® C B(; CNy (1.5)

7,\,007

when % =3-—a=k+7=s+ 2= ('in other words, the spaces in (1.5) have the same scaling).

2 Preliminaries

2.1 Function spaces and definitions

For 1 <p < oo and 0 < X < n, the local Morrey space M, x = M, »(R") is defined as

My = {f € L (R") : | fll,, < o}, (2.1)

where

A
fllpr = Sup (R7 f ) 2.2
= _swp (R H 1 s (2.2)
and Bp(zg) C R™ is the open ball with center z and radius R. The space M, y endowed with
[[[|,,x is a Banach space. When p = 1, M), \ should be understood as a space of Radon measures
and the LP-norm in (2.2) as the total variation of the measure f computed on Bg(zo).

Holder inequality holds true in the framework of Morrey spaces. Precisely, if 1 < p; < oo

1 1 1 A A Ao
and 0 < \; < n with — = ——i——ad—?) —1—1——then
p3 p1r P2 D3 n p2
1f 9l pgng < M1 lpy 2y 11llpy 0, - (2.3)

Recalling the notation My \ = (—A)*S/ 2Mp7 » for Sobolev Morrey spaces, the inhomogeneous
Besov-Morrey space N]f Ag is the following interpolation space

(M3

M )0, (2.4)

S
PAQ

where 6 € (0,1) and s = (1 — 0)s1 + Os2 with s; # so. In view of (2.4), the reiteration theorem
implies that

(Nps71)\7ql ’ N;?A,QQ)Q"] = -]\[ps7>‘7q7 (2’5)

where 1 < ¢,q1,¢2 < 0o with ¢~ = (1 — 0)q; oy 9q_1 and 0 € (0,1).
The space N? g Can be characterized via norms based on dyadic decompositions. For that
matter, let Dy = {§ € R™ : |¢| < 1} and let ¢y € S(R"™) be such that supp(po) C Dy and
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Po(€) = 1if |¢] < 2. Define @), = 25 (2%¢) and ¢y, = ppi1 — ¢ for all k € {0} UN. Then
Pr(€) = Po(277€), i = Prrr — B, supp(vy) € {€ € R : 2571 < J¢] < 281} and

@o + Ziz;k(&) =1, for all €.
k=0

For f € S, consider the quantity ||f]| NE given by
p,Aq

1
00

oo % fll,0 + (Z@ks o * f\lm)q) G 1<psos, 1<g<oo sER oo
k=0
00 % Fllx + Subreogun(2 i * £ll,2) i 1<p<oc, g=oc, s R

We have that

g = L €S R < ([ fllys, < oo} (2.7)
and the pair (N;’A’q, HHNSM) is a Banach space. The 1nclu810n Npxag © Npayg, Is continuous
for 1 < ¢ < g2 < o0, and

N]()),)\,l (- Mp7/\ (- N]()),)\,oov (28)
forall 1 <p < oo and 0 < A < n. Finally we recall the Sobolev type embedding
n—A n—A
N;;A o C Ns1 N for p1 > po and s7 — . = 59 — P (2.9)

The following lemma can be found in [6] and gives estimates for some multiplier operators

L s
acting in N, .

Lemma 2.1. Let m,s € R, 1 <p <00, 0< A <nandl <r < oo Let P(€) € CP/A+L(RY)
where [-] stands for the greatest integer function. Assume that there is A > 0 such that

olelp
e

<§>| < A where (€) = (1+ [¢)V/2,

for all§ € R™ and |a| < [n/2] + 1.Then the operator P(D) is bounded from Ny, . to N)\"" and
satisfies the estimate

HP(D)UHN;;\"; < CAHUHN;A’T’

where C' > 0 is a constant depending only on s, m,p, \.

2.2 Mild solutions

Recall that we are considering x = v = 1/2 and k = p = 1 in (1.1)-(1.4). After applying the
Leray projector in (1.1), we obtain the system

Ou—Au—V xw+Pu-Vu) =0
Ow—Aw+u-Vw+2w—-V(V-w) = Vxu=0 . (2.10)
uli—o = ug, V-ug =0, and w|i—o = wo

The linearized one associated to (2.10) is
ou—Au—Vxw=0

Ow—Aw+2w—-V(V-w)—Vxu=0 . (2.11)
ult=0 = ug, V-up =0, and w|—p = wo
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Proceeding as in [3], we apply the Fourier transform in (2.11) and use the notation y = [u,w] in
order to obtain

g+ A€)g=0
L0 =t (212
where
€121 B(¢)
A©) = | B(§) R(&)+ (7 +2) | =Ai(&) + A(€) + A3(6), (2.13)
with
€121 0 0 B 0
= 0 P21 | a={BEO o |as=[0 Re |, @
and
3 51§2 €183 0 & —&
_ | &S & &8 | & 0 =&
RO = &€ &by & and B(E) =1 & —& o0
For each ¢t > 0, we define the operator G 4(t) via Fourier variables by
Ga(t)yo(§) = e~ 4@y, (2.15)

where A(§) has been defined in (2.13). From [3, inequality (20), p.1430] with v = g = 1, we
have the pointwise estimate

’e_tA(f)‘ < CelePt, (2.16)

Notice that the family {Ga(t)}+>0 is formally a semigroup and y = [u,w] = Ga(t)yo is the
solution of the linearized problem (2.11). Then, according to Duhamel’s principle, the problem
(2.10) is formally equivalent to the integral system

y(z,t) = Ga(t)yo — /Ot Ga(t—s)PV - (u®y)ds, (2.17)

where
PV -(u®y) =[PV (u®u),V-(u®w).

Throughout this paper, solutions of (2.17) are called mild ones for (1.1)-(1.4) (or for (2.10)).

3 Results

The purpose of this section is to state our existence result for the Cauchy problem (1.1)-(1.4).

Given a vector space X C (S'(R3))3 , we denote X7 as the set of all u € X such that div(u) =0
in S'(R3).

Let ,8 >0,1 < ¢g<o0,0 <A< 3andn = %— %. Many times, spaces of scalar
and vector functions will be denoted abusively in the same way, e.g. N q_ f o= WV q_ /\ﬁ Oo)3. Also,
Nq_fgo stands for ((Nq_’f,oo):s)".

We will look for local-in-time mild solutions [u(z,t),w(z,t)] in the class X defined by

{[u,w] e BC <(O,T);N;§fo X N;£w> : [, t'w) € BC ((0,T); (qu,A)Q)} . (3.1

which is a Banach space with norm

[w, )l = sup [[[u(-,t),w(, ][y + sup t"[[[u(,£), w(,t)]llaq.x (3.2)
0<t<T X0 O0<t<T

DOI: 10.5540/03.2015.003.01.0006 010006-4 © 2015 SBMAC


http://dx.doi.org/10.5540/03.2015.003.01.0006

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 3, N. 1, 2015.

where I, Y5 = I liy=g e and I g = IEs las, e
The initial data is taken in the class
[uo, wo] € N, {7 x N ¥ . (3.3)

We are ready to state our well-posedness result.
Theorem 3.1. Assume that 1 < g <00, 0 <A <3, 0<8< 1—% and%—%% <n<
min {770, % + %} . Suppose that the initial data [ug,wo] belongs to the class (3.3).

(i) (Ezistence and uniqueness) There exists T > 0 such that (1.1)-(1.4) has a mild solution
y = [u,w] € X7, which is the unique one in a suitable closed ball B, of Xp whose radius
r > 0 increases with the size of the initial data.

(ii) (Continuous dependence) The solution [u,w]| depends continuously on initial data [ug,wo).

4 Proofs

In order to perform a contraction argument, we need to obtain estimates in Besov-Morrey spaces
for the linear and bilinear terms of the integral equation (2.17). Let us start with core estimates
for the semigroup {G(t)}+>0-

4.1 Estimates for G4(t) in N, -spaces

The next lemma gives estimates for {G4(t)}i>0 on spaces Nj .. In particular, these operators
are well defined in the setting of N7,  -spaces.

Lemma 4.1. Let 5,0 € R, s < 3,1 <g< 0,1 <r<ooand0 < X< 3. There exists a
constant C > 0 such that

s—B
Gl < CA+D2A+ET) lyllys (4.1)

forallt >0 andy € N\ - Furthermore, if s < B, then

s—B
Ga@llys < CO+DPA+ET) Nyl . (42)

for allt>0 andy € N/

,A,00°
4.2 Bilinear estimates

In the remainder of this work, we use the following notation for the bilinear operator appearing
in (2.17)
t
B(y1,y2) = —/ Ga(t = s)PV - (w1 ® y2)ds, (4.3)
0

where y1 = [u1,wi], y2 = [ug, wa].

Lemma 4.2. Let 0 < T < oo. Under the hypotheses of Theorem 3.1, there exist constants
K = Kl(T),KQ = KQ(T) > 0 such that

sup [|[B(y1,y2)lly-6 < K1 sup t7{[ya(-0)[log 0 sup t7[|y2(- t)l2g,0, (4.4)
0<t<T a,\,00 0<t<T 0<t<T
sup t"[|B(y1,y2)llogn < K2 sup t7{[y1(t)lloqx sup t7[[y2(+ 1)]|2,2, (4.5)
0<t<T o<t<T o<t<T

for all y1,y2 € Xr. Moreover, K;(T) — 0% as T — 07, fori=1,2.
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4.3 Proof of Theorem 3.1.
Part (i): Recall the notation B(-,-) in (4.3). Lemma 4.2 yields

1By, 2)||lx, = sup [|B(y,2)lly-5 + sup ¢"[|B(y, 2|y
0<t<T A0 0<t<T

< (Ku(T) + K»(T)) < sup 7 {ly(-, )[4, sup t”llZ(»t)ng,A>
0<t<T o<t<T
< K(T) [yl 20y (4.6)

where K(T) = K1(T) + Ko(T).
Let 74\ = %. Using the inclusion NS,AJ — My » (see (2.8)), Sobolev type embedding (2.9),
and Lemma 4.1, we obtain

1Ga@®yollx, = sup [[Ga)yolly-s + sup t"[[Ga(t)yolloyn
0<t<T A0 0<t<T

<2C(1+T)? sup |lyolly-s +C sup t"[|Ga(t)yollyo
0<t<T a,\,00 0<t<T

2q,\,1

<20(1+7T)* sup |yoll

-8
0<t<T q;,00

+C sup t"[|Ga(t)yoll g
0<t<T 2

q,A,1

<20(1+T)* sup |lyolly-s
o<t<T @209

_TaXA_B
+C sup t”(l—i-t)Q(l-l-t e 2)||Z/0”N*5
0<t<T DA
_Tax_ B
<CO+T) (24 (774 777 2) ) llwolly s
= Orllwoll ¢ (4.7)

because n > g + T‘{T’A. Consider the map & defined by

®(y) = Ga(t)yo + B(y,y). (4.8)

Let T > 0 and B, = {y € &p; ||u||x, < 2r} where
r=Cr HyUHN*B ) (4'9)
q,A,00

and Cp is as in (4.7). Since K;(T) — 0" as T — 0% and K(T') = K{(T)+ K»(T), we can choose
T > 0 such that

4K (T)r =4K(T)Cr HyOHN*f
g,A,00
=Cllyolly-s 41 +T)> (2 + (T” + T"’TQT’A’g)) K(T) < 1.
q,\,00
It follows from bilinearity and (4.6) that

[2(y) — 2(2)llay = 1By, y) — B(z,2) || ar
< Klly = zllap (Iyllxr + 12[lx) (4.10)
§4TK(T)Hy_z||XT7 (411)

for all y, z € B,. Also, using the inequality (4.10) with z = 0, we get

12|y < @O} 27 + 1 2(y) = P(O)]] 27
< |Gatyuollx, + Kllyl%,
<r+4r2K(T) < 2r, for y € By, (4.12)
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because 4K (T)r < 1. The estimates (4.11) and (4.12) show that ® : B, — B, is a contraction and
has a unique fixed point in B,. This one is the unique solution y(x,t) for the integral equation
(2.17) satistying |ly||x, < 2r.

Part (ii): Let y1,y2 be two solutions obtained in item (i) with respective data yo 1,02 and
existence times 71, 5. We have that ||y1[|a,, < 2r1 and ||y2||x,, < 2r2, where r; = Cr, HyiHfooo
(see (4.9)) and 0 < 4K (T;)r; < 1. Since K (T') decreases with T' > 0, we have that 0 < 4K(T)t]71i7<
1, for i = 1,2, and T' = min{7T3,T»}. Thus, taking » = max{ry, 2}, note that 0 < 4K (T)r < 1.

Now, using (4.11), it follows that

ly1 — w2llar = 1Ga(t)yo,1 — Ga(t)yo2 + B(y1,v1) — B(y2, v2) |l xr
< 1Ga(t)(yo,1 — vo)llar+ K(T)|lyr — vellay (lyill xp+ [lyellxz)
< Orllyor = yozlly-s  +2(r1 +r2) K(T)|yr — 2l
q,A, 00

< Crllyo1 — y072HNq—§OO +4rK(T)|ly1 — y2llxr,

and then

s — w2l < e 0t

Y1 — Y2llar S 1— 4rK(T) Yo,1 — Yo,2 Nq_,f,oo’
which implies the desired continuity of the data-solution map. O
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