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Abstract. The Logistic Regression Model is widely used in Discriminant Analysis. However, pa-
rameter estimation is affected by the data configuration and may not be achieved when there is
separation between the groups in the data set, which is a common problem in Discriminant Anal-
ysis. The use of linear programming to detect the separation between groups was proposed by [1],
and a large number of linear programming approaches have been used to detect separate data in
discriminant analysis. However, most research focuses on models for two groups and there are few
models for classification problems in multiple groups. In this paper, a linear programming formu-
lation is proposed to detect the separation between groups for the polytomous logistic regression
model. The proposed model has a non-negative objective function that has a positive value when
the separation is detected and allows to classify the data as completely separate, almost separated or
overlapped, and can be used as part of the parameter estimation. A simulation, using data sets from
the literature, shows that the proposed approach can be an efficient alternative for mathematical
programming applied to problems with multiple groups.

Key-Words. Polytomous Logistic Regression, Discriminant Analysis, Linear Programming, Com-
plete Separation.

1 Introduction

The Discriminant Analysis (DA) is interested in determining the groups of observations based
on their observed scores and developing rules for the allocation of new observations into groups.
The most popular techniques are Fisher’s Linear Discriminant Function (FLDF) and Logistic
Regression Model (LRM). The LRM is a method applied to model the relationship between a
categorical - or ordinal - dependent variable and a set of explanatory variables, or covariates,
that may be either continuous or discrete. The accuracy of the LRM has been reported in many
studies involving bankruptcy prediction, marketing applications and cancer classification, among
others applications. However, the parameter estimation is known to be dependent on the data
configuration. While the model work well for many situations, may not work when the data set
has no overlapping.

Mathematical Programming approaches have been used for detecting separated data in dis-
criminant analysis, but almost all researches have focused on the two group problem. Alternative
procedures, using a set of interrelated goal programming formulations are suggested by [5], but
this approach requires that the data sets needs to be ordered. An algebraic approach, suggested
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by [1], uses ideas of linear programming and specifies the necessary constraints, but not an ob-
jective function. A mixed integer linear program, presented by [9], determines whether data is
separated or overlapped. [10] uses linear programming to check the necessary conditions for the
existence of a finite maximum likelihood estimate for the logistic model. A single linear program-
ming formulation, proposed by [2], generates a plan that minimizes an average sum of misclassified
points belonging of two disjoint point sets in n-dimensional real space.

In this paper we propose an algorithm based on a Linear Programming Model with a non-
negative objective function that has a positive optimal value when separation is detected. The
proposed approach allows to classify the data as completely separated, quasi-separated or over-
lapped, and can be used as part of the parameter estimation. A comparative analysis using different
data sets taken from the literature shows that our linear programming formulation may suggest an
efficient alternative to traditional statistical methods and mathematical programming formulations
for the multi-group classification problem.

This paper is organized as follows. First, we revisit the Classical Logistic Regression model.
Next we present a brief review of Separation. Then we give an overview of the use of Linear
Programming for detecting separation. After that, we propose a Linear Programming formulation
to detect separation in polytomous logistic regression. Last, we apply the formulation on data sets
taken from the literature in order to observe its performance when applied to detect separation.
Finally we give a brief conclusion about the results achieved.

2 Polytomous Logistic Regression Model

Let us consider a sample of n independent observations, available from the groups G1, ..., Gs,
and a vector x of (p + 1) explanatory continuous variables, given by xT = (x0, x1, ..., xp), where
x0 ≡ 1, for convenience. In this case, we know the membership of each observation with respect
to the groups. Furthermore, we also assume that each group has nj observations, j = 1, ..., s, such
that n =

∑s
j=1 nj . Let Y denote the polytomous dependent variable with s possible outcomes.

We will summarize the n observations in a matrix form given by:

X =


1 x11 ... xp1
1 x12 ... xp2
... ... ... ...
1 x1n ... xpn


The Classical Logistic Regression (CLR) Model assumes that the posterior probabilities have

the form:

P (Gk | x) =
exp (Bk)
s∑

i=1

exp (Bi)

, (1)

where Bk = βk0 +

p∑
j=1

βkjxj , k = 1 , 2 , ... , s − 1 and Bs = 0. In this paper the group s is

called reference group. The model involves (s− 1) (p+ 1) unknown parameters and the conditional
likelihood function is:

L (B | Y,x) =

n∏
i=1

s∏
k=1

[P (Gk | x i)]
Yki , (2)
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where Y = (Y1 , ... ,Yn)
T

and Yi = (Y1i, ..., Ysi), with Yki = 1 if Y = k , and Yki = 0 otherwise.
Taking the logarithm, the log-likelihood function is given by:

` (B | Y,x) =

n∑
i=1

s∑
k=1

Ykiln [P (Gk | x i)] . (3)

Thus:

∂

∂βkj
` (B | Y,x) =

n∑
i=1

xij (Yki − P (Gk | x i)) . (4)

The Maximum Likelihood Estimator (MLE) B̂ is obtained by setting the derivatives (4) to zero
and solving for B. The solution is found using an iterative procedure, such as Newton-Raphson
method.

3 Separation

Separation is a common problem in discriminant analysis, and occurs quite frequently. In
practice, the estimation of unknown parameters in logistic regression should be considering the
possible configurations of the sample points. An approach proposed by [1] suggested a sample
classification into three mutually exclusive categories: Overlapped, completely separated and quasi-
completely separated. They also proved that the MLE do not exists if there is complete separation
among the groups, that is, when the groups are linearly separable. If there is complete, or quasi-
complete separation, existing iterative methods fail to converge, or give a wrong answer. In binary
logistic regression, if there is complete separation, the MLE do not exist. However, the problem can
be easily avoided by using other methods, such as Fisher’s Linear Discriminant Function (FLDF)
or Decision Trees (DT), for example. But, in polytomous logistic regression, complete separation
does not make the same sense, although the parameter estimation is not necessarily affected.

We say that two groups Gi and Gj are linearly separable if there exists a vector given by
B = (β1, ..., βp) and a real number δ such that Bxk > δ if x k ∈ Gi and Bxk < δ if x k ∈ Gj ,
where i, j = 1, ..., s, i 6= j and k = 1, ..., n. When there are more than two groups, the difference
between linear separability and separation becomes more important. In this case linear separability
means the existence of a set of vectors B 1, ...,B s satisfying s(s− 1) inequalities given by:

(B j −B t)
Tx i ≥ δ , (5)

for all i = 1, ..., n, and j, t = 1, ..., s (j 6= t).

4 Linear Programming for Detecting Separation

The use of linear programming for detecting separation among the sample points was proposed
by [1]. A mixed integer linear program proposed by [9] classifies a data set as completely separated,
quasicompletely separated and overlapped and, in case of quasicomplete separation, identifies the
minimal set of quasiseparated points. According to [9], the model is always feasible.

A goal programming model, introduced by [5], consists of a model which can be posed as: Given
the groups Gj , j = 1, ..., s and the vectors xi, i = 1, ..., n, the goal is to find a linear transformation
T and the boundaries Lj and Uj to classify each xi, where Lj and Uj represent the lower and
upper boundaries for observations assigned to the j-th group. The objective is to determine a
linear predictor Tk = (tk1, ..., tkp), k = 1, ..., s, and the breakpoints Lj and Uj , such that:
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Lj ≤ Tkx ≤ Uj ⇔ x ∈ Gj (6)

and

L1 < U1 < L2 < U2 < . . . < Ls < Us . (7)

Let Cj , j = 1, ..., s, be the costs of classifying an observation x as belonging to Gj , when, in
fact, the observation is not. Then the problem can be given as:

Min

s∑
j=1

CjTj

s.t

{
Tjx ≥ Lj

Tjx ≤ Uj
(8)

An obstacle to the application of this approach is the need for the classification scores, given

by Si =

p∑
j=1

wjxij , for i ∈ Gk, to be ordered in some way. Another problem, according to [6], is

that the resulting classification rules may not cover each segment of the decision space.
In order to introduce our approach we start by considering a matrix Xj with rows xT

i such

that i ∈ Gj . We can define the (s− 1)× s matrix X̃j to have blocks Xj in each element of column
j, blocks −Xj in row k and column k, for k < j, and in row k − 1 and column k, for j < k, and

to be zero otherwise. For example, if the problem has four groups, the matrix X̃3, is given by:

X̃3 =

 −X3 0 X3 0
0 −X3 X3 0
0 0 X3 −X3

 .
As stated by [7], if we let

X̃ =

 X̃1

...

X̃s

 ,
then X̃B ≥ 0 implies that B satisfies the conditions for quasi-complete separation, where B =(
BT

1 , ... ,B
T
s

)T
is the parameter vector. If X̃jB ≥ 0, for a given j, then

(Bj −Bt)
Txi ≥ 0 . (9)

Because Bs = 0, the corresponding columns of X̃s does not need to be stored, so the matrix X̃j

can be stored in an n(s− 1)× p(s− 1) matrix. Let us consider s groups G1, ..., Gs, and a vector of
explanatory variables, given by xT = (x1, ..., xp). Suppose there is complete separation among two
groups, Gr and Gt, r = 1, ..., s− 1, t = 2, ..., s (r < t). Then there is a hyperplane Hrt such that all
of the sample points in Gr lie on one side of Hrt and all of the sample points in Gt lie on the other
side of the hyperplane. The distance of the xk point from the hyperplane is given by dkrt = xT

k urt,
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k = 1, ..., n, r = 1, ..., (s− 1), t = 2, ..., s, r < t, where urt is a unit vector normal to Hrt showing
separation among Gr and Gt, when it is present. If there is complete separation among Gr and
Gt, then there is a vector urt such that dkrt < 0, if xk ∈ Gr, and dkrt > 0, if xk ∈ Gt. If there is
quasi-complete separation among the groups Gr and Gt, then dkrt ≤ 0, if xk ∈ Gr, and dkrt ≥ 0, if
xk ∈ Gt, with equality for at least one value k = 1, ..., n. Let S(urt) =

∑n
k=1 dkrt and a hyperplane

Prt with normal vector u∗
rt such that S(u∗

rt) is maximum. In this case, finding u∗
rt can be posed

as:

Max S(urt) =

n∑
k=1

dkrt

s.t

 dkrt = xT
k urt ≥ 0

dkrt = xT
k urt ≤ 0

uT
rturt = 1

(10)

If there is no vector urt satisfying the constraints, then there is overlap among Gr and Gt. If
the model above is feasible, its solution provides a vector u∗

rt such that S(u∗
rt) is maximum. The

third constraint, given by uT
rturt = 1, forces urt to have unit length. However is not considered

because our purpose is to determine if the sample point is completely separated, or quasi-completely
separated, by urt, hence the length of urt is not relevant. Furthermore, the referred constraint
gives a non linearly constrained optimization problem, which is not appropriated for our purpose.
Therefore, the proposed model is given by:

Max S(urt) =

n∑
k=1

dkrt

s.t

{
dkrt = xT

k urt ≥ 0
dkrt = xT

k urt ≤ 0
(11)

Let U =
(
u12, ..., u(s−1)s

)
be the matrix whose columns are the vectors urt. Taking into account

that dkrt = xT
k urt, S(urt) =

∑n
k=1 dkrt can be expressed as

∑n
k=1 dkrt = cTn X̃kU, where cn is a

vector with n ones. Thus, the resulting linear programming problem can be posed as:

Max S(urt) =

n∑
k=1

dkrt

s.t

{
XT

r urt ≥ 0
XT

t urt ≤ 0
(12)

where 0 = (0, ...0)T. For s groups there are s(s− 1)/2 models, and each one, which can be solved
using techniques of linear programming, such as Simplex Method or Interior Points Method, has
nr + nt constraints and the same number of slack variables. Furthermore we should to taking into
account that observations with the same values, or which can be expressed as linear combinations of
other observations, a phenomenon also known as multicollinearity, results in redundant equations.
In this case the elimination of these equations leads to a equivalent system having fewer equations
and the same number of variables. Another approach, suggested by [8], is to express the free
decision variables as linear combinations of the slack variables.
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5 Applications

In this section we consider two benchmark data sets, taken from the literature. Iris Data, taken
from [4], and Fatty Acid Composition Data, taken from [3]. We have applied the proposed model
to both data sets. The results achieved are given in the sequence.
Example 1: Iris Data. There are three groups of Iris flowers: Iris Setosa (G1), Iris Versicolor
(G2) and Iris Virginica (G3). For each group there are 50 observations and four independent
variables: Sepal Length (x1), Sepal Width (x2), Petal Length (x3) and Petal Width (x4). In this
paper, the reference group is Iris Virginica. The vectors are shown in Table 1.

Table 1: Vectors for Iris Data.
u12 u13 u23

1.22 0 6 ∃
0 0.12 6 ∃

2.03 1.19 6 ∃
0 0 6 ∃

Our results showed that two groups, G2 (Iris Versicolor) and G3 (Iris Virginica), overlap and
form a cluster completely separated from G1 (Iris Setosa). In this case, it would be possible to
replace the polytomous logistic regression model with a decision tree using a binary model for
groups G2 and G3, as shown by [?].
Example 2: Fatty Acid Data. There are 120 observations, five groups and seven variables,
representing the percentage levels of seven fatty acids, namely palmitic (x1), stearic (x2), oleic
(x3), linoleic (x4), linolenic (x5), eicosanoic (x6) and eicosenoic (x7) acids. In this paper we
consider five groups: rapeseed (G1), sunflower (G2), peanut (G3), corn (G4) and pumpkin (G5)
oils. In this paper the reference group is G5 (pumpkin oil). The original data set have eight groups,
and the complete table of the original data can be found in [3].

Table 2: Vectors for Fatty Acid Data.

u12 u13 u14 u15 u23 u24 u25 u34 u35 u45

33.28 6 ∃ 6 ∃ 2.60 0.00 6 ∃ 6 ∃ 6 ∃ 6 ∃ 6 ∃
21.83 6 ∃ 6 ∃ 0.00 51.84 6 ∃ 6 ∃ 6 ∃ 6 ∃ 6 ∃
139.38 6 ∃ 6 ∃ 4.05 38.03 6 ∃ 6 ∃ 6 ∃ 6 ∃ 6 ∃
268.18 6 ∃ 6 ∃ 0.00 260.72 6 ∃ 6 ∃ 6 ∃ 6 ∃ 6 ∃
0.00 6 ∃ 6 ∃ 0.00 484.90 6 ∃ 6 ∃ 6 ∃ 6 ∃ 6 ∃
1.05 6 ∃ 6 ∃ 2.09 10.42 6 ∃ 6 ∃ 6 ∃ 6 ∃ 6 ∃
0.00 6 ∃ 6 ∃ 0.28 0.00 6 ∃ 6 ∃ 6 ∃ 6 ∃ 6 ∃

Our results showed that the group G1 (rapeseed oil) is completely separated from G2 (rapeseed
oil) and G5 (pumpkin oil). Furthermore, the group G2 (sunflower oil) is completely separated from
G3 (peanut oil). Furthermore, we can see that G4 has overlap with all other groups. In this case
the parameter estimation would not necessarily affected, since it would be possible to estimate all
the parameters for a model that uses G4 (corn oil) as a reference group.

6 Conclusion

The main purpose with this job is to develop and implement a simple and direct model based
on Linear Programming which allows the detection of separation among sample points, in order to
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assist the parameter estimation for the Polytomous Logistic Regression Model, and to explore the
performance of the referred approach. The referred linear programming model has a non-negative
objective function that has a positive optimal value when separation is detected. The results
achieved suggest that the approach is a promising alternative to detecting separation, even when
a large number of dimensions have to be considered. Furthermore the proposed approach provides
a simple and easy-to-implement solution and does not need any particular ordering arrangement
of data, which is an advantage for practical purposes, and there are no computational difficulties
for its implementation, since it uses common algorithms for Linear Programming problems. In the
next step of our study we intend to evaluate the applicability of this approach as an alternative
method to the variable selection for the Polytomous Logistic Regression Model.
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