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Abstract. We consider the problem of a cylindrically anisotropic disk subject to an imposed
displacement on its boundary. In the context of classical linear elasticity, the solution of this
problem is not locally injective. This characterizes material overlapping, which is not physically
admissible. To prevent this anomalous behavior, we minimize the energy functional of classical
linear elasticity subject to the local injectivity constraint. One possible solution of the associated
Euler-Lagrange equations, reported in the literature, is radially symmetric. In this work we search
for a secondary solution, which is rotationally symmetric. In the region where the constraint is
not active, we determine closed-form expressions for the displacement field. In the region where
the constraint is active, which is annular, we determine a relation between the components of the
displacement field to ensure the imposition of this constraint. The expressions obtained in both
regions depend on constants of integration that are determined numerically. In addition, we also
determine the inner and outer radii of the active annular region. This research is of interest in the
investigation of solids with radial microstructure, such as carbon fibers.

Keywords. Anisotropic disk, Elasticity, Constrained minimization, Local injectivity, Penalty
method, Finite element method

1 Introduction

There are problems in classical linear elasticity whose closed-form solutions, while satisfying
the governing equations of equilibrium and well-posed boundary conditions, predict material over-
lapping, which, of course, is not physically realistic. Mathematically, material overlapping is char-
acterized by the loss of injectivity of the deformation field. Locally, it means that the determinant
of the deformation gradient is not strictly positive.

In this work, we consider the problem of a homogeneous cylindrically anisotropic disk subject to
an imposed displacement on its boundary in the absence of body forces. It is known [5] that, in the
context of classical linear elasticity, the solution of this problem predicts material overlapping when
the elastic modulus in the radial direction is greater than the elastic modulus in the tangential
direction, which is a material property found in carbon fibers with radial microstructure [3].

To prevent this anomalous behavior, Fosdick and Royer-Carfagni [5] proposed to minimize the
classical energy functional of classical linear elasticity subject to the local injectivity constraint,
which consists of imposing that the determinant of deformation gradient be no less that a arbi-
trarily small positive parameter. They show that under suitable, but otherwise sufficiently general
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boundary conditions, a solution exists. The authors considered the disk problem mentioned above
to derive a closed-form solution that is locally injective and radially symmetric, in the sense that
the displacement field has only the radial component and depends only on the radius.

The associated constrained minimization problem has a constraint that is highly nonlinear and
active in an unknown region. This poses difficulties to determine closed-form solutions without
imposing a priori assumption on symmetry. Alternatively, Aguiar [1] proposed a numerical proce-
dure based on an interior penalty formulation together with the finite element method that does
not require a priori knowledge of the region where the constraint is active.

Fosdick, Freddi and Royer-Carfagni [4] revisited the constrained disk problem and, using the
numerical procedure proposed in [1], searched for a solution with no a priori assumption on sym-
metry. Their computational results show that there is a secondary solution that seems to be
rotationally symmetric, in the sense that its has radial and tangential components that depend
only on the radius, and bifurcates from the radially symmetric solution obtained in [5].

In our previous work [2], we searched computationally for a rotationally symmetric solution of
the constrained disk problem. We obtained convergent sequences of solutions that tend to a limit
function that is different from the computational results presented in [4]. In particular, in [2], the
tangential displacement is linear with respect to the radius in a neighborhood of the origin, which
is not presented in [4].

In this work, we use the Euler-Lagrange equations of the associated constrained minimization
problem to determine closed-form expressions for a secondary solution, which is rotationally sym-
metric. The expressions are valid in the region where the constraint is not active and depend
on constants of integration that are determined numerically. In the region where the constraint
is active, which is annular, we determine a nonlinear relation between the radial and tangential
components of the solution. This relation also depends on a constant of integration that is deter-
mined numerically. In addition, we also determine the inner and outer radii of the annular active
region. In spite of some differences mentioned above, the results presented in this work are in good
agreement with the computational results obtained in [2].

2 The disk problem

Let B ⊂ R2 be the undistorted natural reference configuration of a linearly elastic body. Points
X ∈ B are mapped to points x := f(X) = X+u(X), x ∈ R2, where u(X) is the displacement of X.
The boundary ∂B of B is composed of two non-intersecting parts, ∂1B and ∂2B, ∂B = ∂1B ∪ ∂2B,
∂1B ∩ ∂2B = ∅, such that u(X) = ū(X) for X ∈ ∂1B, where ū is a given function, and a dead load
traction field t̄(X) is prescribed for X ∈ ∂2B. In addition, a body force b(X) per unit of volume
acts on X ∈ B.

In the constrained minimization theory [5], we consider the minimization problem

min
u∈Aε

E [u], E [u] =
1

2

∫
B
C[E] ·E dX−

∫
B

b · u dX−
∫
∂2B

t̄ · u dX , (1)

where
Aε :=

{
u ∈ W1,2(B)→ R2 | det(1 +∇u) ≥ ε > 0, u = ū on ∂1B

}
(2)

is the set of kinematically admissible solutions with ε being a sufficiently small positive parameter.
In (1), C is the elasticity tensor, which is symmetric and positive definite, and E is the infinitesimal
strain tensor given by

E = [∇u + (∇u)T ]/2. (3)

Let B = B> ∪ B=, B> ∩ B= = ∅, where

B> := int[{X ∈ B | det∇f(X) > ε}], B= := int[{X ∈ B | det∇f(X) = ε}], (4)
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where int[·] denotes the interior of a set. The Euler-Lagrange equations for the constrained mini-
mization problem defined by (1)-(2) are given by

Div T + b = 0 in B> , Div (T− ελ(∇f)−T ) + b = 0 in B= , (5)

where λ(X) ≥ 0 is the Lagrange multiplier field associated with the injectivity constraint det(1 +
∇u) ≥ ε > 0 and T = C[E] is the stress tensor. The boundary conditions are given by

T n = t̄ in ∂2B> , (T− ελ(∇f)−T ) n = t̄ in ∂2B= , (6)

where n is a unit normal to ∂2B. In addition, the jump condition

(T− ελ(∇f)−T )|Σ∩B̄=
n = T|Σ∩B̄>

n (7)

must hold across Σ := B̄>∩B̄=, where n is a unit normal to Σ and where Σ∩B̄= and Σ∩B̄> mean
that the evaluations are understood as limits to the dividing interface Σ from within B= and B>,
respectively.

In this work, we consider that B is a circular disk of radius Re, with its center coinciding
with the origin of the polar coordinate system (R,Θ), which has an associated orthonormal basis
{er, eθ}. In addition, there are no body forces, b = 0, and the entire boundary of the disk is
subject to an imposed displacement ū = ūr er, ūr < 0, yielding ∂2B = ∅. The disk is composed of
a homogeneous and cylindrically anisotropic material, such that the elasticity tensor C is constant
relative to {er, eθ}.

The stress and strain tensors

T = σrr er ⊗ er + σθθ eθ ⊗ eθ + σrθ (er ⊗ eθ + eθ ⊗ er) , (8)

E = εrr er ⊗ er + εθθ eθ ⊗ eθ + εrθ (er ⊗ eθ + eθ ⊗ er) (9)

are related by the Generalized Hooke’s Law, T = C[E], which, here, yields the nonzero components

σrr = c11 εrr + c12 εθθ, σθθ = c12 εrr + c22 εθθ, σrθ = 2 c66 εrθ, (10)

where the elastic moduli c11, c22, c12 and c66 are constant.
If the constraint det(1 +∇u) was not present in (2), the minimization problem (1)-(2) would

become a classical problem of linear elasticity, which has a unique solution u : B → R2 that is
radially symmetric with respect to the center of the disk. This solution is of the form

u(R,Θ) = ur(R) er, (11)

where ur is the radial displacement, which is given by

ur(R) = ūr R̄
k, (12)

where k :=
√
c22/c11 > 0 and R̄ := R/Re.

The unconstrained solution (12) yields

det(1 +∇u) = (1 + k ūr R̄
k−1/Re) (1 + ūr R̄

k−1/Re), (13)

which is negative in the interval

−k ūr/Re < R̄1−k < −ūr/Re (14)

for k < 1 and any value of ūr < 0. This is a violation of the local injectivity constraint det(1+∇u) >
0 and represents the existence of regions where the material intersects itself.
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On the other hand, if the constraint det(1 +∇u) is enforced, Fosdick and Royer-Carfagni [5]
obtained a solution of the Euler-Lagrange equations (5)-(7) together with a uniform normal pressure
on the boundary of the disk that has the form (11). If k < 1 and recalling from above that, instead
of pressure, we are imposing the radial displacement ūr, this solution is given by

ur(R) =

{
(−1 +

√
ε)R for 0 ≤ R ≤ Rc,

ARk +BR−k for Rc ≤ R ≤ Re,
(15)

where

A =
1 + k

2 k
(
√
ε− 1)R−k+1

c , B =
−1 + k

2 k
(
√
ε− 1)Rk+1

c . (16)

In (15), Rc is the radius of the region where the injectivity constraint is active, i.e., where det(1 +
∇u) = ε, which is the solution of the equation

(1 + k)

(
Re
Rc

)k
+ (−1 + k)

(
Re
Rc

)−k
− 2 k ūr

(
√
ε− 1)Rc

= 0. (17)

The expressions of the Lagrange multiplier field λ and the determinant of the deformation gradient
det(1 +∇u) have the same form of the corresponding expressions presented in [5] and will not be
presented here.

In this work, we search for a secondary solution of the Euler-Lagrange equations (5)-(7) together
with the condition of an imposed radial displacement ūr on the boundary of the disk that is
rotationally symmetric with respect to the center of the disk, in the sense that it has the form

u(R,Θ) = ur(R) er + uθ(R) eθ, (18)

where ur and uθ are the radial and tangential displacements, respectively. It then follows from (3),
(8), (9), (10), (18), and f = X + u that the Euler-Lagrange equations (5)-(7) can be written as

c11 u
′′
r + c11

u′r
R
− c22

ur
R2

= 0

u′′θ +
u′θ
R
− uθ
R2

= 0

in B> (19)

and 
c11 u

′′
r + c11

u′r
R
− c22

ur
R2
− λ′

(
1 +

ur
R

)
= 0

u′′θ +
u′θ
R
− uθ
R2

+
λ′

c66 + λ
u′θ = 0

in B=. (20)

Computational results of previous works [2,4] show that B= = {X = R er | Ra < R < Rb} and
B> = Ba> ∪ Bb>, where Ba> := {X = R er ∈ B | 0 < R < Ra} and Bb> := {X = R er ∈ B | Rb < R <
Re} for some value of Ra and Rb such that 0 < Ra < Rb < Re. Assuming that these expressions
hold and imposing the kinematic condition ur(0) = uθ(0) = 0, the solution of (19) is given by{

ur(R) = C1R
k

uθ(R) = C2R
in Ba> (21)

and ur(R) = C3R
k + C4R

−k

uθ(R) = C5R+ C6/R
in Bb>, (22)
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where Ci, i = 1, 2, 3, ..., 6 are constants of integration that are determined below. Note from (21b)
that uθ(R) is linear with respect to R, which is in very good agreement with the computational
results obtained in our previous work [2]. We then use the boundary conditions ur(Re) = ūr and
uθ(Re) = 0 in (22) to express C4 and C6 in terms of C3 and C5, respectively. Then, we rewrite
(22) as ur(R) = C3R

k + (ūr R
k
e − C3R

2k
e )R−k

uθ(R) = C5

(
R−R2

e/R
) in Bb>. (23)

In B=, the equations in (20) are complemented by the local injectivity constraint det(1+∇u) =
ε, where u is given by (18). We then have that this constraint can be written as

g′(R) + g(R)/R = 2 ε, g(R) :=
[
(R+ ur)

2 + u2
θ

]
/R, (24)

which has the general solution
g(R) = εR+ C7/R, (25)

where C7 is a constant of integration determined below. It follows from (24b) and (25) that

(R+ ur)
2 + u2

θ = εR2 + C7 in B=. (26)

We still need to solve the nonlinear system of equations consisting of the two equations in
(20) and the constraint equation (26) for the three unknown fields ur, uθ, and λ. In addition,
we need to impose continuity conditions on both displacement and traction, given by (7), across
the boundaries of the annulus B=. Instead, we use the same numerical procedure of our previous
work [2], which is based on an interior penalty formulation and the finite element method proposed
in [1], to determine approximate solutions uN (R,Θ) = uNr (R) er + uNθ (R) eθ of the constrained
minimization problem (1)-(2), where N is the number of elements used in the finite element mesh.
This numerical procedure also yields approximations of Ra and Rb, which we denote as RNa and
RNb , respectively.

We use the same material and geometric parameters of [4] in their investigation of the bifurcat-
ing solution from the radially symmetric solution (15), that is, ūr = −0.05, c11 = 105, c22 = 104,
c12 = 103, c66 = 103, ε = 0.1, and Re = 1. In addition, we use a sequence of non-uniform meshes
composed of N = 600 q, q ∈ {1, 4, 16, 64, 256}, linear finite elements distributed in three intervals:
375 q elements in 0 < R < 0.07Re, 125 q elements in 0.07Re < R < 0.46Re, and 100 q elements in
0.46Re < R < Re.

To obtain the approximations for the constants of integration, we first isolate Ci, i = 1, 2, 3, 5, 7,
in (21), (23), and (26). We then replace ur and uθ by their respective approximations uNr and uNθ .
The resulting expressions are given by

ĈN1 (R) = uNr /R
k, ĈN2 (R) = uNθ /R, ĈN3 (R) =

uNr − ūr (Re/R)k

Rk − (R2
e/R)k

,

ĈN5 (R) =
uNθ

R−R2
e/R

, ĈN7 (R) = (R+ uNr )2 + (uNθ )2 − εR2.

(27)

In Figure 1 we show curves of ĈNi (R), i = 1, 2, 3, 5, 7, given by (27), where the limits of the
intervals of each curve are determined from numerical approximations of Ra and Rb obtained from
the finite element simulation. These values are given by, respectively, RNa = 0.002 and RNb = 0.019.

In Figures 1a and 1b we show ĈN1 (R) and ĈN2 (R), respectively, versus R in the interval (0, 0.003).
In Figures 1c and 1d we show ĈN3 (R) and ĈN5 (R), respectively, versus R in the interval (0, 1), and
in Figure 1e we show ĈN7 (R) versus R in the interval (0, 0.02). Except for Figure 1a, we see from
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Figure 1: ĈNi (R), i = 1, 2, 3, 5, 7, versus radius R using the numerical solutions obtained with the
meshes parameterized by q = 1, 4, 16, 64, 256.

these figures that, in the intervals where the associated constants of integration Ci are defined, the
functions ĈNi (R) converge to limit functions that are constant as q and, consequently, N increases.

In the case of Figure 1a, we see that ĈN1 (R) is nearly constant outside a small neighborhood of
the origin and that the size of this neighborhood tends to zero as N increases. This is due to the
singular behavior of the radial displacement (21a) at the origin, since k < 1.

The convergence results observed in Figure 1 indicate that there is very good agreement be-
tween analytical and numerical results, allowing us to use the numerical results to determine the
approximate values of the constants of integration, which we denote as CNi , i = 1, 2, 3, 5, 7. We

take CNi as the mean value of the function ĈNi (R) evaluated at certain mesh nodes, as follows,

CN1 :=
1

Ma
>

∑
Ri∈Ba

>

ĈN1 (Ri), CN2 :=
1

Ma
>

∑
Ri∈Ba

>

ĈN2 (Ri), CN3 :=
1

M b
>

∑
Ri∈Bb

>

ĈN3 (Ri),

CN5 :=
1

M b
>

∑
Ri∈Bb

>

ĈN5 (Ri), CN7 :=
1

M=

∑
Ri∈B=

ĈN7 (Ri),

(28)

where Ri is the position of the i-th mesh node and Ma
>, M=, and M b

> are the number of mesh
nodes in the intervals Ba> := (0, RNa ), B= := (RNa , R

N
b ), and Bb> := (RNb , Re), respectively. Using

our most refined mesh, which is associated with q = 256, expressions (28) yield

CN1 = −4.826× 10−2, CN2 = 2.510× 10−1, CN3 = −5.005× 10−2,

CN5 = −1.126× 10−4, CN7 = 2.277× 10−5.
(29)

To determine the radii Ra and Rb of the annular region B=, we evaluate (26) at R = Ra using
the expressions in (21) and at R = Rb using the expressions in (23). The constants of integration
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in the resulting expressions are substituted by their approximations CNi , i = 1, 2, 3, 5, 7, yielding(
CN1 R

k
a +Ra

)2
+ CN2 R 2

a − εR 2
a − CN7 = 0,[

CN3 R
k
b +Rb + (ūrR

k
e − CN3 R 2k

e )/R k
b

]2
+
[
CN5 (Rb −R 2

e /Rb)
]2 − εR 2

b − CN7 = 0.
(30)

Using parameter values introduced above together with (29) and solving numerically the equations
(30a) and (30b) for Ra and Rb, respectively, we obtain RAa = 2.153×10−3 and RAb = 1.906×10−2,
which are very close to the approximations RNa = 0.002 and RNb = 0.019 obtained from the finite
element simulation.

3 Conclusions

We have investigated the problem of a cylindrically anisotropic disk in equilibrium with no
body force, which is subjected to a prescribed displacement along its external boundary. We
have investigated this problem in the context of a constrained minimization theory of elasticity
and determined closed-form expressions for a rotationally symmetric solution, having the form
(18), which are valid in B>. In B=, we have used the local injectivity constraint to find a nonlinear
relation between the displacement components. The expressions depend on constants of integration
that are determined numerically using finite element approximations of the rotationally symmetric
solution. We have also determined the inner and outer radius of B=, which is an annular region.
The results presented in this work are in good agreement with the finite element approximations
of the rotationally symmetric solution obtained in our previous work [2].
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