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We introduce a semi-local theorem for the feasibility and convergence of the inexact Newton method
uk+1 = uk −DF(uk)−1F(uk) + rk, where rk represents the error in each step. Unlike the previous
results of this type in the literature, we prove the feasibility of the inexact Newton method under the
minor hypothesis that the error rk is bounded by a small constant to be computed, and moreover we
prove results concerning the convergence of the sequence uk to the solution under this hypothesis.
We present an application of the method to rigorously compute zeros for two-point boundary value
problems.

Keywords. Differential equations, Inexact Newton Method, Newton-Kantorovich Theorem, Rig-
orous Numerics

1 Introduction

The celebrated Newton-Kantorovich theorem [6] provides (semi-local) sufficient conditions for
the convergence of the Newton method uk+1 = uk−DF(uk)−1F(uk) to a zero of F . On one hand
this is a very powerful and useful result and can be used to compute rigorous bounds to guarantee
the existence of solutions, on the other hand the exact Newton method is usually impracticable
for the purpose of rigorous computations since in general we cannot expect to be able to perform
the computations of uk −DF(uk)−1F(uk) without numerical errors. These numerical errors can
be incorporated in the computations by means of error bounds, but in general cannot be avoided,
specially in the infinite dimensional setting. One option to circumvent this problem is to consider
the more general inexact Newton method uk+1 = uk−DF(uk)−1F(uk)+rk in which rk represents
the numerical error during each step of the computation.

In the recent literature, such as [1,2,5,8,9], semi-local conditions for the inexact Newton method
to be feasible and convergent have been given in the form ‖rk‖ ≤ η ‖F(uk)‖ under conditions on
the bounding term η. In that case, since the sequence uk is know to converge fast to the zeros
of F , it follows that F(uk) converges fast to 0 and thus the same must hold for error term rk.
This fast decay rate for rk, however, is a very strong condition which is hard to obtain in actual
applications.

With this in mind, we present in this paper a condition for the feasibility under the minor
condition that the error terms rk are bounded by a small constant d to be computed, and we
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prove convergence of the sequence uk+1 = uk −DF(uk)−1F(uk) + rk under the condition rk → 0
as k → ∞, with no additional requirements regarding the rate of convergence of rk. Moreover,
together with the Newton-Kantorovich theorem and the bijectivity modulus [7], we present a
method to rigorously compute solutions to boundary value problems.

2 Inexact Newton method

In this section we present a version of the Newton-Kantorovich theorem aimed to the Inexact
Newton method.

Definition 2.1 (Newton operator). Let X and Y be Banach spaces, U ⊂ X open, and F : U ⊂
X → Y differentiable in U . We define the Newton operator TF : X → X by TF (u) = u −
DF(u)−1F(u) if u ∈ U and DF(u) is invertible, and TF (u) = 0 otherwise.

Definition 2.2 (Feasibility for Newton method). Let X and Y be Banach spaces, U ⊂ X open,
A ⊂ U , F : U ⊂ X → Y differentiable in U , and let {uk}k∈N be a sequence in X. We say that
{uk}k∈N is feasible for the Newton method for F in A, if uk ∈ A and DF(uk) is invertible for all
k ∈ N.

Thus, from the above definitions, if {uk}k∈N is feasible for the Newton method in A ⊂ U ,
and {uk}k∈N satisfies the recurrence relation uk+1 = TF (uk) for all k ∈ N, then uk+1 = uk −
DF(uk)−1F(uk), for all k ∈ N, which corresponds to the classical Newton method. Based on
the Newton-Kantorovich theorem we propose the following theorem regarding the feasibility and
convergence of the Inexact Newton method.

Theorem 2.1. Let X and Y be Banach spaces, U ⊂ X an open set, F : U ⊂ X → Y a differen-
tiable function in U , u0 ∈ U , R > 0 satisfying B̄(u0, R) ⊂ U , let {rk}k∈N be a sequence in X, and
let η ≥ 0, K > 0 and d > 0. Suppose that

(a) DF(u0) is invertible with DF(u0)−1 ∈ L(Y,X).

(b)
∥∥DF(u0)−1F(u0)

∥∥ ≤ η and
∥∥DF(u0)−1(DF(u)−DF(v))

∥∥ ≤ K ‖u− v‖ for all u, v ∈ B̄(u0, R).

(c) ‖rk‖ ≤ d for all k ∈ N.

(d) gd(t) = ηd − (1 + Kd)t +
3K

2
t2 has a smallest real zero t∗d ≤ R and moreover d ≤ 1

K
, where

ηd = η + d.

Then 0 < t∗d ≤ 1
K

(
1− 1√

3

)
and moreover

(i) The function F has a unique zero u∗ ∈ B̄ (u0, t
∗
d).

(ii) The sequence {uk}k∈N defined by uk+1 = TF (uk) + rk for all k ∈ N is feasible for the Newton
method for F in B̄(u0, t

∗
d).

(iii) ‖u∗ − uk+1‖ ≤
√

3

2
K ‖u∗ − uk‖2 + ‖rk‖ for all k ∈ N.

(iv) If limk→∞ ‖rk‖ = 0, then limk→∞ uk = u∗.
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Proof. It is easy to see that

0 < t∗d ≤
1

K

(
1− 1√

3

)
.

Proof of (i): Given any z ∈ B̄(u0, t
∗
d) such that DF(z) is invertible, we define Lz : U → X by

Lz(u) = u−DF(z)−1F(u) for all u ∈ U . We shall prove in the following that Lu0 is a contraction
from B̄(u0, t

∗
d) to B̄(u0, t

∗
d). Thus, due to the Banach fixed point theorem (see [4, Theorem 2.1, p.

24]), follows that Lu0
has a unique fixed point, which in turn proves item (i) since it is clear that

every zero of F in B̄(u0, t
∗
d) is a fixed point of Lu0

and vice-versa.
The proof that Lu0 is a contraction on B̄(u0, t

∗
d) will follow from the verification of the three

items bellow,

(I) ‖Lu0
(u)− Lu0

(v)‖ ≤ c ‖u− v‖ for all u, v ∈ B̄(u0, t
∗
d) for some c < 1.

(II) DF(z) is invertible for all z ∈ B̄(u0, t
∗
d) with

∥∥DF(z)−1DF(u0)
∥∥ ≤ 1

1−Kt∗d
.

(III) Lz
(
B̄(u0, t

∗
d)
)
⊂ B̄(u0, t

∗
d − d) for all z ∈ B̄(u0, t

∗
d).

Proof of (ii): Since Lz(z)−u0 = z−DF(z)−1F(z)−u0 it follows that if r ∈ X with ‖r‖ ≤ d then due
to item (III) above we have

∥∥z −DF(z)−1F(z) + r − u0
∥∥ ≤ ‖u0 − Lz(z)‖ + d ≤ t∗d. Combining

this with the results obtained in the proof of (i) we can conclude that, given z ∈ B̄(u0, t
∗
d), it

follows that DF(z) is invertible and z −DF(z)−1F(z) + r ∈ B̄(u0, t
∗
d) for all r ∈ X with ‖r‖ ≤ d.

Thus, using induction, we can conclude that the sequence {uk}k∈N defined by uk+1 = TF (uk) + rk
for all k ∈ N is such that DF(uk) is invertible and uk ∈ B̄(u0, t

∗
d) for all k ∈ N, which proves (ii).

Proof of (iii): Let Lum
be defined by Lum

(u) = u−DF(um)−1DF(u) as in the proof of item
(i). Then it follows that u∗ = u∗ −DF(um)−1F(u∗), and we can show that we have

‖u∗ − um+1‖ = ‖Lum
(u∗)− Lum

(um)− rm‖ ≤
K ‖u∗ − um‖2

2(1−Kt∗d)
+ ‖rm‖ . (1)

Now, we can show that

Kt∗d ≤ 1− 1√
3
⇒ 1

2(1−Kt∗d)
≤
√

3

2
, (2)

Thus we conclude from (1) and (2) that ‖u∗ − um+1‖ ≤
√
3
2 K ‖u

∗ − um‖2 + ‖rm‖ which proves
item (iii).

Proof of (iv): Given m ∈ N, since we proved Kt∗d ≤ 1 − 1√
3

and since from (ii) we have that

um ∈ B̄(u0, t
∗
d) it follows that

√
3
2 K ‖u

∗ − um‖ ≤
√
3
2 Kt

∗
d ≤

√
3−1
2 . Thus, from item (iii) it follows

that, for all m ∈ N, ‖u∗ − um+1‖ ≤
√
3
2 K ‖u

∗ − um‖2 + ‖rm‖ ≤
(√

3−1
2

)
‖u∗ − um‖+ ‖rm‖. Now,

given ε > 0, by definition of lim inf there exists N ∈ N such that k ≥ N implies ‖rk‖ ≤ ε. Thus,
considering the sequence {hk}k≥N defined by recurrence via

hN = ‖u∗ − uN‖ and hk+1 = hk

(√
3− 1

2

)
+ ε for all k ≥ N

it follows from inequality (2) that ‖u∗ − uk‖ ≤ hk for all k ≥ N . On the other hand, one can

verify via induction that the recurrence above implies in the formula hN+k = hN

(√
3−1
2

)k
+∑k−1

m=0 ε
(√

3−1
2

)m
for all k ∈ N and thus limk→∞ hk =

∑∞
m=0 ε

(√
3−1
2

)m
= ε

1−
(√

3−1
2

) =
(

1 + 1√
3

)
ε.

Therefore, since ‖u∗ − uk‖ ≤ hk for all k ≥ N , it follows that lim infk→∞ ‖u∗ − uk‖ ≤
(

1 + 1√
3

)
ε

and since ε > 0 was arbitrary chosen, letting ε→ 0+ in the above inequality, the result follows.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 8, n. 1, 2021.

DOI: 10.5540/03.2021.008.01.0345 010345-3 © 2021 SBMAC

http://dx.doi.org/10.5540/03.2021.008.01.0345


4

3 Bijectivity Modulus and reformulation of the Main Result

To apply the Theorem 2.1 to rigorously verify the existence of a true zero for a partial differential
equation near a numerical zero, we will use the bijectivity modulus defined below.

Definition 3.1. Let X and Y be Banach spaces. For F ∈ L(X,Y ) we define the bijectivity modulus
λ(F ) of F by λ(F ) = ‖F−1‖−1 if F is invertible, and λ(F ) = 0 otherwise.

Theorem 3.1. Let X and Y be Banach spaces, U ⊂ X an open set, F : U ⊂ X → Y a differen-
tiable function in U , u0 ∈ U , R > 0 satisfying B̄(u0, R) ⊂ U , let {rk}k∈N be a sequence in X, and
let η ≥ 0, ν ≥ 0, K > 0 and d > 0. Suppose that

(a) ‖F(u0)‖ ≤ η, λ(DF(u0)) ≥ ν and ‖DF(u)−DF(v)‖ ≤ K ‖u− v‖ for all u, v ∈ B̄(u0, R).

(b) ‖rk‖ ≤ d for all k ∈ N.

(c) gd(t) = ηd − νdt +
3K

2
t2 has a a smallest real zero t∗d ≤ R and moreover d ≤ ν

K
, where

ηd = η + νd and νd = ν +Kd.

Then ν > 0, 0 < t∗d ≤ ν
K

(
1− 1√

3

)
and moreover

(i) The function F has a unique zero u∗ ∈ B̄ (u0, t
∗
d).

(ii) The sequence {uk}k∈N defined by uk+1 = TF (uk) + rk for all k ∈ N is feasible for the Newton
method for F in B̄(u0, t

∗
d).

(iii) ‖u∗ − uk+1‖ ≤
√

3

2
Kν−1 ‖u∗ − uk‖2 + ‖rk‖ for all k ∈ N.

(iv) If limk→∞ ‖rk‖ = 0, then limk→∞ uk = u∗.

(v) ‖v − TF (uk)‖ ≤
√

3 ν−1 ‖F(uk)−DF(uk)(v − uk)‖ for all v ∈ U and k ∈ N.

Proof. Proof of (i) to (iv): Notice that from hypothesis 0 < d ≤ ν

K
and therefore ν > 0.

Thus it follows that λ(DF(u0)) ≥ ν > 0, which by definition implies that DF(u0) is invert-
ible with ‖DF(u0)−1‖ = λ(DF(u0))−1 ≤ ν−1. Therefore, letting η∗ = η

ν and K∗ = K
ν it follows

that ‖DF(u0)−1F(u0)‖ ≤ ‖DF(u0)−1‖ ‖F(u0)‖ ≤ η∗ and ‖DF(u0)−1(DF(u) − DF(v))‖ ≤
‖DF(u0)−1‖ ‖(DF(u)−DF(v))‖ ≤ K∗‖u− v‖ for all u, v ∈ A. Thus, the hypothesis (a) and (b)
of Theorem 2.1 are satisfied. Therefore, letting η∗d = η∗+ ν∗d and η∗d = η∗+K∗d from item (ii) it

follows that the polynomial g∗d(t) = η∗d − ν∗dt+
3K∗

2
t2 = ν−1gd(t) has a smallest zero t∗d ≤ R, and

thus from Theorem 2.1, items (i) to (iv) follows.
Proof of (v): Notice that |λ(DF(uk))− λ(DF(u0))| ≤ ‖DF(uk)−DF(u0)‖ ≤ K ‖uk − u0‖ ≤

Kt∗d ≤ ν
(

1− 1√
3

)
⇒ λ(DF(uk)) ≥ λ(DF(u0)) − ν

(
1− 1√

3

)
≥ ν − ν

(
1− 1√

3

)
= ν√

3
> 0, and

thus ‖v − TF (uk)‖ =
∥∥DF(uk)−1(F(uk)−DF(uk)(uk − v))

∥∥ ≤ √
3
ν ‖F(uk)−DF(uk)(uk − v)‖ ,

proving the theorem.

Remark 3.1. Supposing the hypothesis of Theorem 3.1 is true and letting {uk}k≤n be such that
uk+1 = TF (uk) + rk and ‖rk‖ ≤ d for all k < n, we can let rk = 0 for all k ≥ n and use the
conclusions of Theorem 3.1. In special, (v) can be used to estimate ‖v − TF (un)‖ for any v ∈ U ,
and thus it can be used to estimate ‖uk+1 − TF (uk)‖ where un+1 is the candidate for new term in
the Inexact Newton Method.
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4 Applications

We apply Theorem 3.1 to use the Inexact Newton Method for two point boundary value prob-
lems of the form

u′′ = f(x, u), u′(0) = u′(1) (3)

where f : R2 → R. Letting I = (0, 1) and I ′ = [0, 1], it is known that H2(I) can be regarded
as C1(I ′) functions (see [3, Theorem 8.2]), we let H2

N (I) = {u ∈ H2(I) | u′(0) = u′(1)}. Then
zeros u ∈ H2(I) of the two point boundary value problem in (3) are the zeros of the operator
F : H2

N (I)→ L2(I) defined by
F(u) = u′′ − f(x, u). (4)

Letting ω(k) :=
√

1 + ((k − 1)π)2 + ((k − 1)π)4 for k ∈ N, then πcos : L2(I)→ `2(N) and hcos :
H2
N (I)→ `2(N) defined by πcos(u) = (ûcos(1), ûcos(2), · · · ) and hcos(u) = (ω(1)ûcos(1), ω(2)ûcos(2), · · · )

are isometric isomorphisms, where {ûcos(k)}k∈N is the sequence of coefficients of u ∈ L2(I)
in the cosine basis (see [3, p. 145]). Thus, we define πcos,m : L2(I) → Rm by πcos,m(u) =
(ûcos(1), · · · , ûcos(m)) and h−1cos,m : Rm → H2

N (I) the restrictions to Rm ⊂ `2(N), where we identify
Rm with a subset of `2(N) through the isometric embedding πRm(a) = (a1, · · · , am, 0, · · · ) ∈ `2(N),
for a = (a1, · · · , am) ∈ Rm. Given an operator G : H2

N (I)→ L2(I), it is reasonable to consider the
finite dimensional operator Gcos,m : Rm → Rm defined by Gcos,m = πcos,m ◦ G ◦ h−1cos,m as a natural
finite dimensional approximation for G.

Given m > 0, and f : R2 → R a C2 function, and an initial point u0 = h−1cos,m(b0) ∈ H2
N (I),

where b0 ∈ Rm, to compute η ≥ 0, ν ≥ 0, K > 0 in Theorem 3.1, we follow the reference [7]. The
sequence {uk}k∈N for the Inexact Newton Method for F in H2

N (I) can be chosen computing non-
rigorously the sequence {bk}k∈N for the Newton Method bk+1 = TFcos,m

(bk), b0 = hcos(u0) ∈ Rm
for the finite dimensional function Fcos,m : Rm → Rm and then letting uk = h−1cos,m(bk) for all
k ∈ N. Since all uk will be elementary functions, it follows that rigorous enclosures for the errors
‖rk‖ = ‖uk+1 − TF (uk)‖ can be computed using the Simpson’s rule with rigorous error bounds
using the error formula given by item (v) of Theorem 3.1, that is

‖uk+1 − TF (uk)‖ ≤
√

3 ν−1 ‖F(uk)−DF(uk)(uk+1 − uk)‖

=
√

3 ν−1
∥∥−u′′k+1 + 2u′′k − f(x, uk)− fu(x, uk)(uk+1 − uk)

∥∥ (5)

Example. Consider the boundary value problem

u′′ = sin(u(x))− cos(2πx), u′(0) = u′(1).

Then F : H2
N (I) → L2(I) is the operator given by F(u)(x) = u′′(x) − (sin(u(x))− cos(2πx)) for

all u ∈ H2
N (I) and x ∈ I. It was shown in [7] that, for m = 5,

b0 = (3.14159265328020, 0, 0.734842599198155, 0, 2.19859211843525× 10−11)

is an approximate zero of Fcos,5 in B̄(0, 1)R5 , with ‖Fcos,5(b0)‖ = 8.185852625229473× 10−9, and
thus

u0 = h−1cos(b0) = b0(1) +

m∑
k=2

b0(k)

√
2 cos((k − 1)πx)

w(k)

is an approximate zero for F in B̄(0, 1)H2
N (I). A plot of the numerical solution u0 is shown in

Figure 1. Following [7] we computed η = 0.57075361344299 × 10−6, ν = 0.29866890113073, and
K = 1 as valid constants for Theorem 3.1.

Finally, letting d = 10−5 we obtain a zero t∗d for gd(t) = ηd − νdt + 3K
2 t

2 satisfying t∗d =
1.19113048496 × 10−5 ≤ 1. Thus, the conditions of Theorem 3.1 are satisfied and we can apply
the Inexact Newton Method with garanteed feasibility.
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Figure 1: Approximate solutions u0 (solid red curve) and u4 (blue circles).

The iterates uk for the Inexact Newton Method are computed using uk = h−1cos(bk), where bk
are the iterates in the Newton Method for Fcos,5 starting at b0. Using equation (5) the errors
rk = uk+1 − TF (uk), are proven to satisfy

‖rk‖ ≤ d, for 0 ≤ k ≤ 4.

The norms of these itearations are shown on Table 1. From item (i) of Theorem 3.1 we conclude
that there exists an unique zero u∗ of F in B̄(u0, t

∗
d)H2

N (I). Moreover, we obtain by Inexact Newton

Method u4 such that ‖u∗ − u4‖ ≤ 2.9989923490307 × 10−6 < t∗d, that is, u4 is closer to the true
solution u∗ than u0 and u4 ∈ B̄(u0, t

∗
d)H2

N (I). Thus, using our method, it was possible to obtain a

better approximation for a zero of F compared to the one obtained in [7].

Table 1: Iterations of the initial solution u0 with the Inexact Newton method. The first column shows

the norm of F , the second column presents the norm of the error terms, and the third column shows the

distances from the computed solutions to the true solution u∗.

k ‖Fcos,5(bk)‖ ‖rk‖ ‖u∗ − uk‖
0 8.185852625229473× 10−9 - t∗d = 1.19113048496× 10−5

1 1.184138216374711× 10−16 3.00046899391681× 10−6 3.0008803891992× 10−6

2 1.171296009783492× 10−16 2.99896627000569× 10−6 2.9989923818771× 10−6

3 1.150312379208693× 10−16 2.99896627000465× 10−6 2.9989923490297× 10−6

4 1.140972793438999× 10−16 2.99896627000624× 10−6 2.9989923490307× 10−6

5 Conclusion

In this paper, we propose a new theorem for the feasibility and convergence of the inexact
Newton method, with explicit convergence rate formulas similar to that of the Newton-Kantorovich
theorem. We use this theorem, together with our definition of bijectivity modulus, to rigorosuly
verify the existence of zeros of a differential operator F using the inexact Newton method.
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We illustrate the method with an example, where we computed a solution to a boundary value
problem. It was shown that given an initial solution, the method can compute a more accurate
solution in a few steps.
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