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Abstract. General fractional solutions for the Euler-Bernoulli and Timoshenko-Ehrenfest differ-
ential equations are deduced for the case of a simply supported beam submitted to uniformly
distributed static load. Both solutions are confronted against Ansys software results, taken as ref-
erence, leading to the corresponding particular fractional solutions. As expected, both particular
solutions converge to the Ansys results for small deflections and beam with high-aspect ratio, while,
for opposite geometrical features, the fractional Timoshenko-Ehrenfest solution performs slightly
better, kept the linear elasticity. The shear effects are realized in the fractional order transforma-
tion of the Euler-Bernoulli model; besides, from comparative analysis, other physical effects in the
structure may be present in the fractional order.

Resumo. Soluções fracionárias gerais para as equações diferenciais de Euler-Bernoulli e Timoshenko-
Ehrenfest são deduzidas para o caso de uma viga biapoiada submetida a uma carga estática uni-
formemente distribúıda. Ambas as soluções são confrontadas com os resultados do software Ansys,
tomado como referência, levando às soluções fracionárias particulares correspondentes. Como esper-
ado, ambas as soluções espećıficas convergem para os resultados do Ansys para pequenas deflexões
e vigas de alta razão de aspecto, enquanto que, na geometria oposta, a solução fracionária de
Timoshenko-Ehrenfest tem um desempenho ligeiramente melhor, mantida a elasticidade linear. Os
efeitos de cisalhamento são constatados na transformação de ordem fracionária do modelo de Euler-
Bernoulli; além disso, a partir da análise comparativa, outros efeitos f́ısicos na estrutura podem
estar presentes na ordem fracionária.
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1 Introduction

In structural engineering, two beam theories for linear elastic regime are of fundamental impor-
tance: Euler-Bernoulli (EB) and Timoshenko-Ehrenfest (TE). EB beam theory works under the
premise that for small deflections of a high-aspect ratio (length to principal transversal dimension)
prismatic beam submitted to a lateral load the cross sections remain flat and perpendicular to the
neutral plane. TE beam theory, on the other hand, likewise imposes the cross sections flatness for
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small deflections, however not necessarily perpendicular to the neutral plane; this comes down to
stating that such a theory includes the shear effects, increasingly present with lower aspect ratio,
which leads to more accurate modeling for thick beams. EB is therefore a particular case of TE,
both analytical integer order models restricted to simple and linear systems.

In this work we propose and solve fractional models for both beam theories using corresponding
Ansys numerical solutions as reference for a specific example. The resulting fractional models, as
expected, circumvent most of the linear limitations of the original models, ending up closer to the
Ansys results. Moreover, as expected as well, the fractional TE models (FTE) perform slightly
better than the fractional EB ones (FEB) due to its shear effects consideration, already intrinsic
to the TE beam theory; the EB beam theory does not predict such effects. Departing from those
fractional models, the shear effects, necessarily present in the Ansys model, remain represented in
the transformation from TE to FTE, and start to be represented in the transformation from BE to
FEB, as a clear improvement. Therefore, the fractional order is a measure of improvement as much
as it deviates from the original integer order, so that to approach the behavior of real systems.
For this reason, the improvement in FTE is lower than in FEB. Comparing and analyzing those
results lead to the verification of the shear effects repercussion in the fractional order and enable
the search for other physical effects possibly contemplated in this way. So far, we did not find any
works directed to such a kind of investigation.

2 Analytical development

A simply supported beam is chosen for the investigation. The beam is prismatic, homogeneous,
isotropic, linearly elastic, and L in length. The bending moment and shear force are represented
by M and V , respectively. ~q is the uniformly distributed load along its length.

According to [5], BE beam theory states that

EI
d4v(x)

dx4
= −q(x), (1)

where E is the Young’s modulus and I is the rectangular moment of inertia of the cross section.

For our specific problem, applying the boundary conditions v(0) = v(L) = 0 and v′
(
L

2

)
=

M(0) = 0, the solution for the bending strain results

v(x) =
q

EI

(
−x4

24
+
Lx3

12
− L3x

24

)
. (2)

2.1 Fractional Euler-Bernoulli solution

The following fractional differential equation is similar to the Eq.(1), which models the specific
problem studied here. We employ the Caputo fractional derivative, defined in [2], [4] and [6], for
example. The fractional model proposed for such a solution is the fractional ordinary differential
equation of order α

dαv

dxα
= − q

EI
, (3)

with 4 ≤ α < 5 and v = v(x).
For m ≤ α < m+ 1 with α non-integer and m integer, the Laplace transform for derivatives of

order α is given by [6]

L[f (α)(x)] = sαF (s)−
m∑
k=1

[sα−kf (k−1)(0)], (4)
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where F (s) is the Laplace transform of f(x).
Applying Eq.(4) in Eq.(3), we have

sαV (s)− sα−1v(0)− sα−2v′(0)− sα−3v′′(0)− sα−4v′′′(0) = − q

EI

1

s
. (5)

From the boundary conditions, we have v(0) = 0. Thus, taking v′(0) = k1, v′′(0) = k2 and
v′′′(0) = k3, replacing in Eq.(5) and rearranging the terms, we get

V (s) = − q

EI

1

sα+1
+

1

s2
k1 +

1

s3
k2 +

1

s4
k3. (6)

To obtain the solution in the x variable, the application of the inverse Laplace transform in
Eq.(6) results in

v(x) = − q

EI Γ(α+ 1)
xα + k1 x+

k2
2
x2 +

k3
6
x3. (7)

Since for the case study v(L) = 0, v′
(
L

2

)
= 0 and M(0) = 0, we get

v(x) =
q

EI

[
−xα

Γ(α+ 1)
+

4Lα−3

2α−1Γ(α+ 1)
(2α−1 − α)x3 +

Lα−1

2α−1Γ(α+ 1)
(4α− 3.2α−1)x

]
. (8)

Employing α = 4 into Eq.(8) and taking into account that for n ∈ N we have Γ(n + 1) = n!,
the integer solution is recovered in Eq.(2).

From the development used to obtain Eq.(8) and applying the boundary conditions M(0) =
M(L) = 0, the fractional solution of the bending moment results

M(x) =
q(α− 1)

Γ(α)

(
−xα−2 + Lα−3x

)
. (9)

For α = 4,

M(x) =
−qx2

2
+
qL

2
x. (10)

Analogously, we obtain the expression for the modified (fractional) transversal shear force.

Employing the boundary condition V

(
L

2

)
= 0 and using the fact that the derivative of the

bending moment is the shear force, we obtain

V (x) =
q(α− 2)(α− 1)

Γ(α)

(
−xα−3 +

Lα−3

2α−3

)
. (11)

Also for α = 4, the original integer order expression for the shear force is recovered.

2.2 The shear effects of the Timoshenko-Ehrenfest beam theory

From the TE beam theory [1], for cross sections suffering small distortions, without losing
linearity, the shear deformation is given by the first order ordinary differential equation

dv

dx
= −c V

GA
, (12)

where v = v(x), V = V (x), G is the cross elasticity modulus, and c is the shear coefficient related
to the bending deformation at the height of the section, which depends on its geometric dimensions
and shape.
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In Eq.(12), A is the cross-sectional area, G =
E

2(1 + ν)
for rectangular sections (our case study),

and c =
12 + 11ν

10(1 + ν)
, where ν is a Poisson module.

Solving Eq.(12) considering V given in Eq.(11) for α = 4, we obtain

vc(x) =
qc

GA

(
x2

2
− Lx

2

)
. (13)

Therefore, considering the bending and shear deformations, the final deflection can be given by
means of the superposition principle, as below.

v(x) = vf (x) + vc(x), (14)

where vf (x) and vc(x) are the bending and shear deformations, respectively in Eqs.(2) and (13).
Thus,

v(x) =
q

EI

(
−x4

24
+
Lx3

12
− L3x

24

)
+

qc

GA

(
x2

2
− Lx

2

)
. (15)

The characterization of the effects seen in this section are addressed by TE beam theory,
discussed in the following.

The TE model considers, in addition to bending deformation, the shear effects that the beam
can undergo when subjected to loading. In this case, the cross sections of a beam carry out,
besides the translational displacement (deflection) and the rotation purely associated with the
bending accomplished by the BE model, the rotation around their barycenter with respect to the
neutral plane, in this model no longer kept orthogonal. This additional rotation comes from the
shear stresses more present in the extremities of thicker beams [1] and [3]. In essence, the first
premise of EB’s theory is preserved, but not the second. The resulting system of equations is

d3θ

dx3
=

q

EI
dv

dx
= θ − EIc

GA

d2θ

dx2

, (16)

where the dependent variables of the θ = θ(x) and v = v(x) system represent, respectively, the cross
section rotation and the deflection of the barycentric axis, therefore including the shear effects.

For the particular case of a simply supported under uniformly distributed load, the deflection
results

v(x) =
q

EI

(
−x

4

24
+
Lx3

12
− L3x

24

)
+

cq

GA

(
x2

2
− Lx

2

)
(17)

for the boundary conditions θ

(
L

2

)
= 0, M(0) = M(L) = 0 and v(0) = 0.

Since Eq.(17) matches Eq.(15), we propose in this work a fractional solution for the TE model.

2.3 Fractional Timoshenko-Ehrenfest solution

Using the superposition principle as stated in Eq.(15), we propose a fractional solution for the
TE equation as follows:

v(x) = vFEB(x) + vFC(x), (18)

where vFEB(x) and vFC(x) are the fractional solutions for deflection (effects of bending moments)
and shear, respectively.
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The solution vFEB(x) was obtained in Eq.(8). On the other hand, we obtain vFC(x), integrating
Eq.(12), using the fact that the shear force integral V is the bending moment M , and finally we
consider M as the fractional bending moment given in Eq.(9). From that, we get

vFC(x) =
c

GA

q(α− 1)

Γ(α)

(
xα−2 − Lα−3x

)
. (19)

Finally, taking Eq.(19) and Eq.(8) in Eq.(18), we have

v(x) =
q

EI

[
−xα

Γ(α+ 1)
+

4Lα−3

2α−1Γ(α+ 1)
(2α−1 − α)x3 +

Lα−1

2α−1Γ(α+ 1)
(4α− 3.2α−1)x

]
+

c

GA

q(α− 1)

Γ(α)

[
xα−2 − Lα−3x

]
,

(20)

which is the fractional TE solution that provides the deflection suffered by a simply supported
beam under an uniformly distributed load.

For α = 4, Eq.(20) matches Eq.(17) and the solution is verified.

3 Application and results

Confronting Eqs.(8) and (20) against the Ansys results, the α values for the particular solutions
of FEB and FTE, respectively, can be found. For the sake of clarity, we have conceived a simple
example of structure loaded within the linear elastic limits: a simply supported AISI 1020 steel
beam, isotropic, prismatic, with dimensions (b, h, L) = (0, 3m; 0, 8m; 5m), and subjected to an
uniformly distributed transversal load q = 1 × 104N/m. According to Ansys simulation, the
maximum stress for such a load is σmax = 3, 1996 × 106Pa, hence far below the maximum yield
stress for this material, on average σmax = 4, 2× 108Pa [7].

As the variable in question is the transversal deflection, from symmetry, the maximum deflection
locates in the middle of the beam, i.e. x = 2, 5m. We have chosen this position to obtain the
fractional order α because of its relevance to prevent failure. From Ansys, the maximum deflection
is 3, 5609 × 10−5m. Then, the resulting outcome is α = 4, 1585 for FEB and α = 4, 0876 for
FTE, as expected, as the closer α is to 4, the less influential is the fractional order “needed” for
adjustment toward the problem under investigation (accurately modeled in Ansys). This means
that the original integer order TE model is confirmed closer to the actual real structure behavior,
since the interference from the fractional adjustment in FTE is lower than for the case of the
original integer order EB model; this is coherent with the fact that the TE model encompasses the
shear effects, on the contrary of EB, and represents better the real structure behavior. Employing
these α values back into Eqs.(8) and (20), correspondingly, the particular fractional solutions are
achieved. From this point onward the final equations for deflections can be compared with the
Ansys response along the entire beam.

Figure 1 reveals the deflection behavior of EB, FEB, TE and FTE solutions with respect to
Ansys. Besides, we have included the deflection ratio between FBE and TE solutions (in this case,
α = 4, 0614). All five graphs are symmetrical and show progressively larger differences from the
middle to each extremity, which is in accordance with the shear effects, that lead the structure to
an increased transversal deflection to accommodate those shear deformations. For this reason in
the Ansys model, the closest to reality, the deflection is the highest; almost as much as it would
be in an experiment, all structural relaxation tend to be contemplated in the numerical model.
Still with respect to Ansys, from the worst to the best are the graphs EB, TE, FEB and FTE,
behaving as expected. EB lacks on the shear effects, and that is why it is significantly worse (far
from Ansys) than TE; on the other hand, when comparing FEB and FTE, the original shear effects
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consideration in TE still makes FTE prevail over FEB, but very slightly. The latter shows that
the fractional calculus approach is capable of achieving a good model adjustment not depending
importantly on the accuracy of the original integer order model (at least for this application).
Besides, from the comparison between FEB and TE, as the first is closer to Ansys, FEB surely
incorporates the shear effects originally absent in EB, and as the results suggest, possibly other
physical effects.

Figure 1: Deflection ratio for the solutions of the integer and fractional order with respect Ansys,
and deflection ratio for the solutions of FEB with respect to TE.

4 Conclusions

In this work, we have proposed fractional models for the transversal deflection of Euler-Bernoulli
and Timoshenko-Ehrenfest beams. We have obtained the respective fractional solutions consid-
ering the case of a simply supported beam subjected to an uniformly distributed static loading.
From the analysis of a specific example, the fractional solutions have converged to a close approx-
imation to the corresponding Ansys model of reference. The fractional Euler-Bernoulli solution
performed better than the original integer order Timoshenko-Ehrenfest solution, which ensures the
accomplishment of the shear effects -absent in the original integer order Euler-Bernoulli solution.
Besides, this solution suggests the accomplishment of other physical effects as well, since it ap-
proaches closer to the predicted real structure behavior. Both fractional solutions are novelties as
far as we know. From the analysis of those equations using the Ansys model as reference, this
investigation may lead to identify the repercussion of different physical effects present within the
structure in the magnitude of the fractional order.
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