Trabalho apresentado no XL CNMAC, Evento Virtual - Co-organizado pela Universidade do Mato Grosso do Sul (UFMS).

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Estimativa de parâmetros para um modelo de populações acopladas

Flávia T. Giordani¹ UFSC, Florianópolis, SC Fermín S. V. Bazán² UFSC, Florianópolis, SC Luciano Bedin³ UFSC, Florianópolis, SC

Resumo Nesse trabalho consideramos um modelo discreto metapopulacional de N sítios e de uma única espécie, tal que a dinâmica local satisfaz o modelo de Ricker e há migração de indivíduos entre os sítios. O objetivo do trabalho é a estimativa da taxa de crescimento intrínseco da população, da capacidade de suporte de cada sítio e da fração de indivíduos que migra em cada sítio, a partir de dados sintéticos que fornecem a quantidade de indivíduos em cada sítio em ℓ gerações. Para isso, um problema de mínimos quadrados é formulado e resolvido numericamente através de uma técnica de otimização de região de confiança com restrições de caixa.

Palavras-chave. Metapopulação, mapa de Ricker, quadrados mínimos; método da região de confiança

1 Introdução

Modelos metapopulacionais tem-se constituído numa importante ferramenta no estudo da degradação de ambientes naturais e da conservação das espécies [3,8,9,12]. Um dos aspectos imprescindíveis para que esses modelos forneçam previsões confiáveis a respeito do comportamento da dinâmica do sistema, é o ajuste adequado dos parâmetros biológicos envolvidos ao modelo [3,13]. A identificação de quais parâmetros devem ser incorporados ao modelo e a posterior estimativa desses parâmetros a partir de dados observacionais é uma tarefa complexa [9,12,13]. Diferentes técnicas e abordagens podem ser encontradas na literatura; por exemplo, em [10], a técnica da maximização da probabilidade é utilizada para estimar os parâmetros de sobrevivência e de migração de uma metapopulação de borboletas; em [5], a mesma técnica é utilizada, mas com a adição de efeitos de estocasticidade do meio ambiente; em [12], técnicas estatísticas baseadas em simulação Monte Carlo são utilizadas; paralelamente, em [6,14], podemos encontrar técnicas de otimização aplicadas à estimativa de parâmetros em sistema de equações não-lineares.

No presente trabalho, abordamos a estimativa de parâmetros para um modelo metapopulacional discreto de uma única espécie, composto de N sítios conectados por processos migratórios [7]. Baseados em [4], supomos que a dinâmica local em cada sítio é tal que a função de reprodução e sobrevivência da espécie é dada pelo mapa de Ricker [11] e que a fração $\overline{\mu}$ de indivíduos que migra em cada sítio é independente da densidade. A metapopulação é então modelada como

¹flavia.giordani@ufsc.br.

²fermin.bazan@ufsc.br.

³luciano.bedin@ufsc.br.

uma rede de mapas acoplados em que cada sítio pode ser interpretado como o vértice de um grafo, com a função de sobrevivência e reprodução operando em cada vértice, e as interações ocorrendo através dos efeitos dispersivos [7]. O objetivo do trabalho é apresentar a estimativa dos parâmetros $r, \kappa \in \overline{\mu}$, sendo r a taxa de crescimento intrínseco da população e κ a capacidade de suporte de cada sítio [5,11,15], a partir de dados sintéticos que fornecem o número de indivíduos em cada sítio em ℓ gerações. Assim como em [4,5], os dados sintéticos são simulados a partir do sistema e subsequentemente são imbuídos de ruído, de forma a imitarem dados observacionais. O problema de estimar $r, \kappa \in \overline{\mu}$ é então formulado como um problema de mínimos quadrados. Estabelecendo condições necessárias para a solução do problema através da obtenção da matriz de sensitividade [9], obtemos aproximações numéricas para os parâmetros por meio de uma técnica de otimização de região de confiança com restrições de caixa [1]. Diferentemente de [4], onde os parâmetros do modelo são estimados separadamente, desconsiderando-se a conexão entre os sítios e os processos migratórios, e da abordagem SPOM (stochastic patch occupancy models [12]), que ignora a dinâmica local, nossa abordagem é mais geral, uma vez que o problema é formulado a partir da dinâmica global do sistema.

2 Modelo

O modelo metapopulacional no qual este trabalho está baseado consiste em uma coleção de sítios enumerados por $1, 2, \ldots, N$. Os sítios correspondem a fragmentos de habitat que possuem recursos necessários à reprodução e à sobrevivência das populações que o habitam. Vamos denotar por x_j^t a população total de indivíduos no sítio j, no tempo t. Cada passo de tempo corresponde a uma geração. Na ausência de migração entre os sítios, supomos que a dinâmica local é dada por $x_i^{t+1} = f(x_i^t), \ j = 1, 2, \dots, N, \ t = 0, 1, 2, \dots$ sendo $f : \mathbb{R} \to \mathbb{R}$ uma função suficientemente suave que incorpora processos de reprodução e sobrevivência em cada sítio. Vamos admitir também que há conexões entre os sítios, as quais propiciam a migração de indivíduos. Uma hipótese importante no modelo é de que o processo de migração de um determinado sítio para outros sítios ocorre em cada geração após o processo de dinâmica local. Dessa forma, a cada geração, uma fração μ_{ii} de indivíduos do sítio i migra para o sítio j, em um processo de curta duração, de forma que é razoável supormos que não há morte de indíviduos quando em migração. Por simplicidade, admitimos que os processos migratórios são independentes da densidade populacional de forma que $\mu_{ji} = c_{ji}\overline{\mu}$, sendo $0 < \overline{\mu} \le 1$ a fração de indivíduos que migra em cada sítio e $0 \le c_{ji} \le 1, c_{ii} = 0$, a proporção dos indivíduos que migram do sítio i e chegam no sítio j. Podemos então descrever a dinâmica metapopulacional como [7,8]

$$x_j^{t+1} = (1 - \overline{\mu})f(x_j^t) + \sum_{i=1}^N c_{ji}\overline{\mu}f(x_i^t), \quad t = 0, 1, 2, \dots, \quad j = 1, 2, \dots, N.$$
(1)

Em (1), a expressão $c_{ji}\overline{\mu} f(x_i^t)$ representa a quantidade de indivíduos que deixam o sítio *i* e movemse para o sítio *j* no tempo *t*. Assim, os dois primeiros termos à direita da equação (1) representam a quantidade de indivíduos que permanece no sítio *j* após o processo de migração, e o segundo termo representa a quantidade de indivíduos provenientes dos sítios vizinhos ao sítio *j*. Para haver consistência com a hipótese de que os processos migratórios são 100% bem sucedidos, devemos admitir que $\sum_{i=1}^{N} c_{ji} = 1$, ou seja, a matriz $C = [c_{ij}]$ é do tipo coluna estocástica.

Nesse trabalho consideramos a dinâmica local determinada pelo modelo de Ricker, o qual é dado por

$$f(u, r, \kappa) = u \exp(r(1 - (u/\kappa))), \tag{2}$$

sendo r > 0 a taxa de crescimento *per capita* intrínseco da população, κ a capacidade de suporte do sítio [4,15] e *u* a população local. A escolha do modelo de Ricker é de interesse puramente prático, uma vez que este tem se mostrado bastante versátil e eficaz na modelagem da dinâmica de vários tipos de organismos incluindo micróbios, peixes e insetos [4,11].

Denotando $x^t = [x_1^t \ x_2^t \ \dots \ x_N^t]^T$, o sistema (1) pode ser reescrito como

$$x^{t+1} = (I_N - \overline{\mu}B)F(x^t, r, \kappa), \quad t = 1, 2, \dots$$
 (3)

sendo $F:\mathbb{R}^{N+2}\rightarrow\mathbb{R}^N$ dado por

$$F(x,r,\kappa) = [f(x_1,r,\kappa) \ f(x_2,r,\kappa) \ \dots \ f(x_N,r,\kappa)]^T, \quad x = (x_1,x_2,\dots,x_N)$$
(4)

e $B = I_N - C$, I_N é a matriz identidade de ordem N.

3 Estimativa dos parâmetros $r, \kappa \in \overline{\mu}$

Vamos supor que há dados observacionais ou sintéticos disponíveis para a quantidade de indivíduos em cada sítio, para determinadas gerações $t = 0, 1, \ldots, \ell$. Denotemos por \tilde{x}_j^t essa quantidade de indivíduos referente ao sítio j e geração t e definimos $\tilde{x}^t = [\tilde{x}_1^t \ \tilde{x}_2^t \ \ldots \ \tilde{x}_N^t]^T$. Do ponto de vista prático, admitindo que conhecemos a matriz C, devemos encontrar os parâmetros r, $\kappa \in \overline{\mu}$ adequados de forma que o sistema (3) descreva da forma mais apurada possível a dinâmica da metapopulação. Para isso, consideramos como condição inicial para o sistema (3) o vetor \tilde{x}^0 , sendo que os demais x^t são obtidos iterando-se esse sistema. Notamos que nesse processo, x^t corresponde a uma expressão dada em termos de r, $\kappa \in \overline{\mu}$, uma vez que, nesse estágio, esses parâmetros são desconhecidos. Queremos encontrar ($\overline{\mu}, \kappa, r$) que melhor se ajusta ao sistema, em outras palavras temos de resolver o seguinte problema de minimização com restrições [14]:

$$\min_{(\overline{\mu},\kappa,r)\in K} H(\overline{\mu},r,\kappa),\tag{5}$$

sendo

$$H(\overline{\mu}, r, \kappa) = \frac{1}{2} \sum_{t=1}^{\ell} |x^t(\overline{\mu}, r, \kappa) - \widetilde{x}^t|^2;$$
(6)

e $K = [\mu_1, \mu_2] \times [\kappa_1, \kappa_2] \times [r_1, r_2]$; os limitantes $0 \le \mu_1 < \mu_2 \le 1$, $0 < \kappa_1 < \kappa_2$, $0 < r_1 < r_2$ são dados previamente. A existência de soluções para o problema (5) é uma consequência direta do Teorema de Weierstrass, uma vez que x^t , $t = 0, 1, \ldots, \ell$, é uma composição de um número finito de funções suaves. Por outro lado, a solução pode não ser única e temos de lidar com a possível existência de múltiplos mínimos locais.

Uma condição necessária para a existência de um mínimo local $(\overline{\mu}, r, \kappa)$ de H é que $\nabla H(\overline{\mu}, r, \kappa) = (0, 0, 0)$. Sendo assim, derivando o funcional com relação a cada um dos parâmetros e igualando a zero obtemos

$$\sum_{t=1}^{\ell} \sum_{i=1}^{N} (x_i^t - \widetilde{x}_i^t) \frac{\partial x_i^t}{\partial \overline{\mu}} = 0, \quad \sum_{t=1}^{\ell} \sum_{i=1}^{N} (x_i^t - \widetilde{x}_i^t) \frac{\partial x_i^t}{\partial r} = 0, \quad \sum_{t=1}^{\ell} \sum_{i=1}^{N} (x_i^t - \widetilde{x}_i^t) \frac{\partial x_i^t}{\partial \kappa} = 0.$$
(7)

Agora, derivando (3) com respeito a $\overline{\mu}$, $r \in \kappa$, obtemos

$$\frac{\partial x^{t+1}}{\partial \overline{\mu}} = -BF(x^t, r, \kappa) + (I_N - \overline{\mu}B)\frac{\partial F}{\partial u}(x^t, r, \kappa)\frac{\partial x^t}{\partial \overline{\mu}}, \quad t = 1, 2, \dots$$
(8)

$$\frac{\partial x^{t+1}}{\partial r} = (I_N - \overline{\mu}B) \left[\frac{\partial F}{\partial r} (x^t, r, \kappa) \cdot \mathbf{1}_N + \frac{\partial F}{\partial u} (x^t, r, \kappa) \frac{\partial x^t}{\partial r} \right], \quad t = 1, 2, \dots$$
(9)

$$\frac{\partial x^{t+1}}{\partial \kappa} = (I_N - \overline{\mu}B) \left[\frac{\partial F}{\partial \kappa} (x^t, r, \kappa) \cdot \mathbf{1}_N + \frac{\partial F}{\partial u} (x^t, r, \kappa) \frac{\partial x^t}{\partial \kappa} \right], \quad t = 1, 2, \dots$$
(10)

em que

$$\begin{split} &\frac{\partial F}{\partial u}(x^t,r,\kappa) = diag\left(\frac{\partial f}{\partial u}(x_1^t,r,\kappa),\frac{\partial f}{\partial u}(x_2^t,r,\kappa),\ldots,\frac{\partial f}{\partial u}(x_N^t,r,\kappa)\right),\\ &\frac{\partial F}{\partial r}(x^t,r,\kappa) = diag\left(\frac{\partial f}{\partial r}(x_1^t,r,\kappa),\frac{\partial f}{\partial r}(x_2^t,r,\kappa),\ldots,\frac{\partial f}{\partial r}(x_N^t,r,\kappa)\right),\\ &\frac{\partial F}{\partial \kappa}(x^t,r,\kappa) = diag\left(\frac{\partial f}{\partial \kappa}(x_1^t,r,\kappa),\frac{\partial f}{\partial \kappa}(x_2^t,r,\kappa),\ldots,\frac{\partial f}{\partial \kappa}(x_N^t,r,\kappa)\right)\end{split}$$

e $\mathbf{1}_N = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \end{bmatrix}^T$. O sistema (8)-(10) é complementado com as condições iniciais $\frac{\partial x^0}{\partial \overline{\mu}} = 0$, $\frac{\partial x^0}{\partial r} = 0$ e $\frac{\partial x^0}{\partial \kappa} = 0$. Definindo

$$\mathbf{J}(\overline{\mu}, r, \kappa) = \begin{bmatrix} \frac{\partial x^1}{\partial \overline{\mu}} & \frac{\partial x^1}{\partial r} & \frac{\partial x^1}{\partial \kappa} \\ \frac{\partial x^2}{\partial \overline{\mu}} & \frac{\partial x^2}{\partial r} & \frac{\partial x^2}{\partial \kappa} \\ \vdots & \vdots & \vdots \\ \frac{\partial x^\ell}{\partial \overline{\mu}} & \frac{\partial x^\ell}{\partial r} & \frac{\partial x^\ell}{\partial \kappa} \end{bmatrix}, \quad \mathbf{X}(\overline{\mu}, r, \kappa) = \begin{bmatrix} x^1(\overline{\mu}, r, \kappa) \\ x^2(\overline{\mu}, r, \kappa) \\ \vdots \\ x^\ell(\overline{\mu}, r, \kappa) \end{bmatrix}, \quad \widetilde{\mathbf{X}} = \begin{bmatrix} \widetilde{x}^1 \\ \widetilde{x}^2 \\ \vdots \\ \widetilde{x}^\ell \end{bmatrix},$$

as equações (7) podem ser reescritas como

$$\mathbf{J}^{T}(\overline{\mu}, r, \kappa)(\mathbf{X}(\overline{\mu}, r, \kappa) - \widetilde{\mathbf{X}}) = 0.$$
(11)

Em outras palavras, (11) é uma condição necessária para que H tenha um mínimo local em $(\overline{\mu}, r, \kappa)$. Na literatura, **J** é referida como a *matriz de sensitividade* [3,9].

4 Resultados Numéricos

Para ilustrar o método, geramos dados sintéticos para o problema baseando-nos em procedimento adotado em [4]: dados são obtidos de forma a simular, tão realisticamente quanto possível, resultados experimentais obtidos a partir de uma rede de N = 9 subpopulações do inseto *Drosophila*, dispostas ao longo da borda de um círculo. Os insetos em cada sítio podem migrar para os dois sítios mais próximos, de forma que a matriz C é dada por

	0	0, 5	0	0	0		0	0,5]	
	0, 5	0	0, 5	0	0		0	0	
	0	0, 5	0	0, 5	0		0	0	
C =		•		•					
	:	:	:	:	:	:	:	:	
	0	0	0		0	0.5	0	0.5	
	0, 5	0	0		0	0	0,5	0	

A condição inicial em cada sítio é $\tilde{x}_i^0 = 20$ para $1 \le i \le 5$, $\tilde{x}_i^0 = 21$ para $6 \le i \le 9$.

O método usado na estimativa dos parâmetros de interesse é baseado numa técnica de otimização de região de confiança com restrições de caixa, conforme descrito no trabalho clássico de Coleman e Li [1], e disponível no MATLAB (m-file *lsqnonlin*). Para completude, notamos que a minimização de H(p), $p = (\overline{\mu}, r, \kappa)$, por meio de um método de região de confiança consiste em construir uma sequência de aproximações $p^{(j)}$ onde o incremento $s^{(j)} = p^{(j+1)} - p^{(j)}$ é solução do subproblema quadrático com limitante sobre o incremento,

$$\min_{s \in \mathbb{R}^3} \left\{ q_j(s) = g_j^T s - \frac{1}{2} s^T B_j s, \, \|s\| \le \Delta_k \right\},\,$$

em que g_j denota o gradiente de H descrito em (11) no ponto $p^{(j)}$ e B_j é uma matriz simétrica que aproxima a Hessiana de H, por exemplo $\mathbf{J}^T(p^{(j)})\mathbf{J}(p^{(j)})$. Uma abordagem compreensiva sobre métodos de região de confiança pode ser encontrada em [2].

Apresentamos resultados numéricos da estimativa dos parâmetros usando dados inexatos construídos a partir dos estados x^t , descritos na forma $\tilde{x}^t = x^t + \varepsilon^t$, $t = 0, \ldots, \ell$, em que ε^t um vetor randômico de perturbações com distribuição uniforme tal que,

$$\|\widetilde{x}^t - x^t\| = \mathrm{NL}\|x^t\|,$$

e NL denota o nível de ruído nos dados. Em todos os casos, na estimativa dos parâmetros $\overline{\mu}$, $r \in \kappa$, o método é inicializado com valores randômicos. Uma vez que trabalhamos com dados sintéticos, podemos escolher previamente os valores de $\overline{\mu}$, $r \in \kappa$ a serem estimados. Com isso, o conjunto K pode ser adequadamente escolhido de forma a conter todos os ($\overline{\mu}, \kappa, r$) utilizados na simulação numérica. Utilizando essa metodologia e tendo em vista os valores dos parâmetros utilizados nas simulações apresentadas a seguir, consideramos $0,05 \leq \overline{\mu} \leq 0,9, 1 \leq r \leq 5$ e $10 \leq \kappa \leq 35$.

Nas Tabelas 1–4 estimativas relativas a quatro situações típicas de interesse biológico são apresentadas. Nas colunas 2, 3 e 4 de cada tabela os valores estimados de $r, \overline{\mu} \in \kappa$ são apresentados, enquanto que nas colunas 5, 6 e 7 constam os respectivos erros relativos, os quais denotamos por $E(r), E(\overline{\mu}) \in E(\kappa)$. Os valores de $r \in \kappa$ escolhidos para ilustrar os resultados são típicos de experimentos em laboratório [4].

Tabela 1: Estimativas dos parâmetros ($\overline{\mu}, \kappa, r$) a partir de dados com ruído para vários valores de NL. Neste caso, os dados simulados usam $r = 3, 8, \overline{\mu} = 1/3$ e $\kappa = 25$.

NL	r	$\overline{\mu}$	κ	E(r)	$E(\overline{\mu})$	$E(\kappa)$
0,001	3,7989	0,3388	25,0024	0,0003	0,0163	0,0001
0,0050	$3,\!8035$	0,3692	25,0142	0,0009	$0,\!1075$	0,0006
0,0100	$3,\!8097$	0,3342	25,0235	0,0026	0,0026	0,0009
0,1000	$3,\!8126$	0,3283	24,9331	0,0033	0,0151	0,0027
0,5000	$5,\!0000$	0,9000	$23,\!9443$	0,3158	1,7000	0,0422

Tabela 2: Estimativas dos parâmetros $(r, \overline{\mu}, \kappa)$ a partir de dados com ruído para vários valores de NL. Neste caso, os dados simulados usam $r = 3, 8, \overline{\mu} = 0, 7$ e $\kappa = 25$.

		, ,	1 /			
NL	r	$\overline{\mu}$	κ	E(r)	$E(\overline{\mu})$	$E(\kappa)$
0,0010	3,7990	0,7121	$24,\!9987$	0,0003	0,0173	0,0001
0,0050	3,7956	0,7079	25,0083	0,0011	0,0113	0,0003
0,0100	3,8222	$0,\!6373$	25,0064	0,0059	0,0896	0,0003
0,1000	3,9344	0,9000	$25,\!2355$	0,0354	0,2857	0,0094
0,5000	4,9753	$0,\!0500$	$24,\!4248$	0,3093	0,9286	0,0230

Na Tabela 1 consideramos um valor relativamente baixo da taxa de migração $\overline{\mu}$, como reportado em [4]; já na Tabela 2, exploramos a estimativa dos parâmetros no caso de uma taxa de migração de maior magnitude. Na Tabela 3, consideramos o caso em que a taxa de crescimento intrínseco da população é relativamente baixa, enquanto que na Tabela 4 aumentamos a capacidade de suporte de cada sítio. Os resultados foram obtidos utilizando-se $\ell = 5$. Resultados obtidos com outros valores de ℓ , não apresentados no manuscrito devido à limitação de espaço, mostraram estimativas relativamente estáveis, dependendo do nível de ruído nos dados. Mais precisamente, para os casos $\ell = 3$ ou $\ell = 4$, os resultados são comparáveis aos obtidos com $\ell = 5$, para pequenos valores de NL; no entanto, à medida que NL aumenta, os respectivos erros relativos são maiores comparativamente aos resultados do caso $\ell = 5$. No outro extremo, para os valores $\ell = 9$ ou $\ell = 12$, o método produz resultados acurados apenas para o caso de dados com níveis de ruído superiores a 0,05%. De modo geral, observamos que o método fornece resultados com erros relativos compatíveis com o nível de ruído respectivo, independentemente do fato de considerarmos taxas de migração baixas ou altas, ou das variações de $r \in \kappa$, embora isso tenha de ser investigado mais a fundo. É importante observar que quando alguma das variáveis estimadas atinge uma das cotas, superior ou inferior, o erro relativo da solução tende a aumentar. Esse é o caso, por exemplo, da Tabela 1 em que, no caso de 50% de ruído, $\overline{\mu}$ atinge a cota superior 0,9; o mesmo ocorre na Tabela 2 para o caso de 50% de ruído, em que o parâmetro $\overline{\mu}$ atinge a cota inferior 0,05.

Tabela 3: Estimativas dos parâmetros $(r, \overline{\mu}, \kappa)$ a partir de dados com ruído para vários valores de NL. Neste caso, os dados simulados usam $r = 2, 5, \overline{\mu} = 1/3$ e $\kappa = 25$.

r	$\overline{\mu}$	κ	$\mathrm{E}(r)$	$E(\overline{\mu})$	$E(\kappa)$
2,5000	0,3473	24,9938	0,0000	0,0418	0,0002
2,5003	0.2808	24,9931	0.0001	0.1576	0.0003
2.5027	0.2623	24.9814	0.0011	0.2130	0.0007
2.5135	0.2166	24.6571	0.0054	0.3501	0.0137
2.9687	0.0500	23,4036	0.1875	0.8500	0.0639
	$\begin{array}{r} r \\ 2,5000 \\ 2,5003 \\ 2,5027 \\ 2,5135 \\ 2,9687 \end{array}$	$\begin{array}{c ccc} r & \overline{\mu} \\ \hline 2,5000 & 0,3473 \\ 2,5003 & 0,2808 \\ 2,5027 & 0,2623 \\ 2,5135 & 0,2166 \\ 2.9687 & 0,0500 \end{array}$	$\begin{array}{c cccc} r & \overline{\mu} & \kappa \\ \hline 2,5000 & 0,3473 & 24,9938 \\ 2,5003 & 0,2808 & 24,9931 \\ 2,5027 & 0,2623 & 24,9814 \\ 2,5135 & 0,2166 & 24,6571 \\ 2.9687 & 0.0500 & 23,4036 \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Tabela 4: Estimativas dos parâmetros $(r, \overline{\mu}, \kappa)$ a partir de dados com ruído para vários valores de NL. Neste caso, os dados simulados usam $r = 3, 8, \mu = 1/3$ e $\kappa = 27$.

		, , ,				
NL	r	$\overline{\mu}$	κ	E(r)	$E(\overline{\mu})$	$E(\kappa)$
0,0010	3,8010	0,3337	26,9974	0,0003	0,0011	0,0001
0,0050	$3,\!8039$	0,3345	26,9897	0,0010	0,0036	0,0004
0,0100	3,7970	0,3317	27,0081	0,0008	0,0048	0,0003
0,1000	3,5650	0,1685	$27,\!6562$	0,0618	$0,\!4945$	0,0243
0,5000	3,5124	0,3713	$27,\!8490$	0,0757	$0,\!1140$	0,0314

5 Conclusões

Neste trabalho utilizamos um método de otimização de região de confiança com restrições de caixa para a estimativa de parâmetros para um modelo de populações acopladas. A estimativa é feita a partir de dados sintéticos gerados através de iterações do sistema. No caso de dados sem ruído, as soluções tem erros relativos pequenos se consideramos poucos estágios de tempo, por exemplo, $3 \leq \ell \leq 5$; utilizando dados com mais estágios de tempo, o erro relativo tende a aumentar. Uma possível justificativa para isso pode ser que o aumento do grau de sobredeterminação do sistema acarreta na existência de multiplos mínimos locais para H, embora essa afirmação tenha de ser investigada mais a fundo. No caso de dados com ruído, o método apresenta melhores resultados quando consideramos um número maior de estágios de tempo. A escolha de quantos e quais estágios de tempo devem ser utilizados na estimativa de parâmetros em modelos metapopulacionais é um tema controverso [12,13] o qual está fora do escopo do presente trabalho. Entretanto, destacamos que, para a faixa de valores de $r \in \kappa$ aqui considerados, a dinâmica local obtida a partir do mapa de Ricker apresenta um comportamento complexo com a presença de órbitas caóticas, isto é, órbitas sensíveis a dados iniciais [11]. Isso pode levar o sistema (3) a ter longos transientes [4], portanto considerar dados com poucos níveis de tempo pode afetar a qualidade dos parâmetros

estimados. De qualquer forma, a abordagem e o método se mostraram promissores, em parte devido à generalidade considerada, uma vez que a dinâmica local bem como a migração entre os sítios são incorporadas à formulação do problema. Pretendemos futuramente investigar a incorporação de efeitos de estocasticidade demográfica à abordagem [5], com o intuito de estender o método à estimação de parâmetros a partir de dados observacionais.

Referências

- Coleman, T. F. and Li, Y. An Interior, Trust Region Approach for Nonlinear Minimization Subject to Bounds, SIAM Journal on Optimization, 6:418–445, 1996. DOI:10.1137/0806023.
- [2] Conn, A. R., Gould, N. I. M. and Toint, P. L. Trust region methods. SIAM, Philadelphia, 2000.
- [3] Conroy, M. J., Cohen, Y., James, F. C., Matsinos, Y. C. and Maurer, B. A. Parameter for spatially estimation, reliability and model improvement explicit models of animal populations, *Ecological Applications*, 5:17-19, 1994. DOI:10.2307/1942047.
- [4] Dey, S. and Joshi, A. Local Perturbations Do Not Affect Stability of Laboratory Fruitfly Metapopulations, *PLoS ONE*, 2:1–9, 2007. DOI:10.1371/journal.pone.0000233.
- [5] Drake, J. M. Density-Dependent Demographic Variation Determines Extinction Rate of Experimental Populations, *PLoS Biology*, 3:1300-1304, 2005. DOI:10.1371/journal.pbio.0030222.
- [6] Gábor, A. and Banga, J. R., Robust and efficient parameter estimation in dynamic models of biological systems, *BMC Systems Biology*, 9:1–25, 2015. DOI:10.1186/s12918-015-0219-2.
- [7] Giordani, F. T. Migração dependente da densidade em modelos metapopulacionais, Tese de Doutorado, UFRGS, 2008.
- [8] Hanski, I. Metapopulation Models, *Encyclopedia of Ecology*, Elsevier, volume 3, pages 2318-2325, 2008.
- [9] Hanski, I., Kuussaari, M. and Nieminen, M. Metapopulation Structure and Migration in the Butterfly Melitaea Cinxia, *Ecology*, 75:747–762, 1994. DOI:10.2307/1941732.
- [10] Hanski, I., Alho, J. and Moilanen, A. Estimating the Parameters of Survival and Migration of Individuals in Metapopulations, *Ecology*, 81(2000) 239-251. DOI:10.2307/177147.
- [11] Ives, A. R., Woody, S. T., Nordheim, E. V., Nelson, C. and Andrews, J. H., The synergistic effects of stochasicity and dispersal on population dynamics, *American Naturalist*, 163:375– 387, 2004. DOI: 10.1086/381942.
- [12] Moilanen, A. The equilibrium assumption in estimating the parameters of metapopulation models, *Journal of Animal Ecology*, 69:143–153, 2000. DOI:10.1046/j.1365-2656.2000.00381.x.
- [13] Moilanen, A. Implications of empirical data quality to metapopulation model parameter estimation and application, *Oikos*, 96:516–530, 2002. DOI:10.1034/j.1600-0706.2002.960313.x.
- [14] Schittkowski, K. Parameter estimation in systems of nonlinear equations, Numerische Mathematik, 68:129–142, 1994. DOI:10.1007/s002110050052.
- [15] Zhang, B., DeAngelis, D. L. and Ni, W. M. Carrying Capacity of Spatially Distributed Metapopulations, *Trends in Ecology & Evolution*, 36:164–173, 2020. DOI:10.1016/j.tree.2020.10.007.

7