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Abstract: In this paper we give necessary and sufficient conditions for all zeros of palindromic
polynomial of even degree R(2) =1+ Az + 2% 4+ ... + 2" 1) + 2", with A\ € R, to be on the unit
circle and we find v € R for which S(z) = R(z)+~vz" has all its zeros inside or on the unit circle .
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Let P(z) = ag + a1z + ... + a,z" be a polynomial of degree n, n > 1, a; € R, i = 0,...,n.
Then P is palindromic if a; = an—;, for every ¢ = 0,1,...,n. In this paper we give neces-
sary and sufficient conditions for all zeros of palindromic polynomial of even degree n, n > 1,
R(z) =1+ Mz + 22+ ... +2"71) + 2 with A € R, to lie on the unit circle. Furthermore, we
prove that the polynomial S(z) = R(z) 4+ 2", with vy > A —2 (7 > 0, A > 0), has all its zeros in
the closed unit disc. More details can be found in [1, 4].

1 Classical results

n

Theorem 1.1 (Enestrom-Kakeya, real coefficients case). Let P(z) = Zaizi be a polynomial
i=0

such that 0 < ag < a1 < ... < ay. Then, P(z) has all its zeros in the closed unit disc.

n
Definition 1.2. Let the polynomial P(z) = Zaizi, a; € R. Define the associated polynomial
=0

* 1 —1 - *
P*(z) =2"P <z> =apz" +a12" +---+an:a01_ll(z_zj)7
s

. , 1
whose zeros z; are the inverses of the zeros zj, of P(z), that is, z; = —.
Zk

1

Definition 1.3. If P(z) = P*(z), that is, P(z) = z"P <), the polynomial P(z) is said to be
z

palindromic.

n
It is clear that if P(z) = Zaizi, a; € R, ¢ = 0,...,n, is palindromic, then a; = a,—,,
1=0

1 =0,1,...,n, as we mentioned above.

Definition 1.4. Given P(z) with real coefficients, the sequence of polynomials P;(z) is defined
by:

3

Pj(z) = a,(j)zk, where Py(z) = P(z) and
k=0
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Pii1(2) = af Pj(2) — oY) \PF(2), j=0,1,...,n— 1, (1.1)
with P (z) = P*(z).

From (1.1), the coeflicients of Pj;1(z) satisfy the recurrence relation

agﬂ):a(()j)ag)—aj Y ., k=0,1,...n—j and j=0,1,...n. (1.2)

n—j n—j
Definition 1.5. For each polynomial P;(z) we shall denote the constant term a(() 7) by d; and

+1) j .
5J+1—agj ]aéj)\2—|an]_j]2, j=0,1,....,n—1.

Lemma 1.6. If P; has pj zeros in |z| <1 and if ;41 # 0, then Pj41 has

pig =4 PP if 0j41 >0
i n—j-—pj if 941 <0

zeros in |z| < 1. Furthermore, Pjy1 has the same zeros on |z| =1 as Pj.

The proof of this lemma may be found in Marden [3], p. 195.
The next result is due to Schur [5, 6] and the proof follows from Lemma 1.6.

Lemma 1.7. If 0 < |ag| < |an|, then P(z) has all its zeros in the closed unit disc if, and only
if, Py(z) has all its zeros in the closed unit disc.

Using the same notation presented in [2], let a = (a1, a2, ...,a,_1) € R* 'and L: R*! - R

be a function defined by
n—1
a) := min a; —y|.
)= min 3 les =l

With a permutation o on {1,2,...,n — 1} for which as(1) < as2) < ... < ag(n—1) one has: if
n—1 n—1

n is even, then L(a) = Z laj — ag(n/2)l; if 7 is odd, then L(a) = Z a; — y| for every y in a
J=1 J=1

closed interval [ay(|n/2)); Go([n/2))], Where [t] := max(—oco,t] N Z and [t] := min[t,00) NZ. In

addition, considering m(a) (resp. m(a)) defined by m(a) := ag([n/2)) (resp. m(a) := as(|n/2)))

then m(a) = m(a) when n is even.

Theorem 1.8. Let P(z Zazz be a palindromic polynomial of degree n with a, > 0, and

=0
let a = (al, Ay auny anfl).

1. Suppose m(a) + L(a) < 2ay,.

(a) If P(1) > 0, then all zeros of P lie on the unit circle. In this case, there are at least

27 2
two zeros of the form e with ——— < 0 < il
n n
(b) If P(1) <0, then P has real zeros 3 > 1 and B~' and the other zeros lie on the unit
circle.

2. Suppose m(a) > L(a) + 2a,. Then one of the following holds:

(a) All the zeros of P lie on the unit circle. When n is odd, there are three or five zeros
4 -1 1
of the form e with (nn)Tr <0< (n+n)7r

multiplicity 2 or 4.

When n is even, —1 is a zero with

(b) P has real zeros 3 < —1 and 3~ and the other zeros lie on the unit circle.

The proof of this result may be found in [2].

DOI: 10.5540/03.2015.003.01.0008 010008-2 © 2015 SBMAC


http://dx.doi.org/10.5540/03.2015.003.01.0008

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 3, N. 1, 2015.

2 Main Results

Theorem 2.1. The zeros of the polynomial R(z) = 1+ Az + 22 + ...+ 2" 1) + 2", A € R, of

2

even degree n > 1, lie on the unit circle if and only if ——=5 < A < 2.

Proof. From Theorem 1.8, a = (A, A,..., ), m(a) =m(a) = A and L(a) = 0.
If m(a) + L(a) <2,ie, A<2,as R(1) =2+ (n—1)A > 0 when A > — from item (1)
(a) of Theorem 1.8 follows that all zeros of R(z) lie on the unit circle when ——=5 <\ < 2.
Furthermore, if m(a) + L(a) = A < 2 and R(1) =2+ (n —1)A <0, i.e,, A < —=2;, R(2) has
one real root in (1,00). In fact,

2
n—1>
_2

lirri R(z) =24+ (n—1)A<0and lim R(z) >0,
z—

zZ—+00

that is, there is a signal change of R(z) in (1,00). This case is described in item (1) (b) of
Theorem 1.8.
If A > 2 (m(a) > L(a) +2), R(z) has one real root in (—oo, —1). In fact,

lim R(z) >0and lim R(z) =2-X<0,

Z——00 z——1

that is, there is a signal change of R(z) in (—oo, —1). Observe that this case is described in item
(2) (b) of Theorem 1.8.

So, for n even, we prove that the zeros of R(z) lie on the unit circle if, and only if,
-2 <A< O

Remark 2.2. If n is even and A = 2, we have R(—1) = 0 and z = —1 is a zero of multiplicity 2
of R(z), as described in item (2) (a) of Theorem 1.8.

Theorem 2.3. The perturbed polynomial
S(z)=R(z)+72" =14+ Nz+ 22+ ..+ 2"+ (1 +7)2", (A\>0,7>0,n even)

has all zeros in the closed unit disc if v > A — 2 and has at least one zero outside the closed unit
disc if v < A — 2.

Proof. For A =0, we have S(z) =1+ (14 7)z" and the proof is immediate.
From here, we consider A > 0.
We write the polynomials S(z) and Si(z) in the form

S(z) = sp2" + Sp_12" 4 ..+ so,
where s, =1+7v,s;, =X, i=1,...,n—1,and sp = 1, and
Si(z) = sg_)lz”_l + 37(11_)22”_2 +...+ s((]l),
where the coefficients SS), k=0,1,...,n—1, are defined by equation 1.2 using 5 = 0. So,
SS) = S0Sk — SnSn—k-
Substituting the values of si, £k =0, ...,n, we have
sgll_)l = snl_)2 =..= sgl) = —yA <0 and s(()l) =—(v+2)<0.

Note that, as v > 0,0 <1 <147, ie., 0 < sy < sy, Lemma 1.7 can be applied to conclude
that the zeros of S(z) lie in the closed unit disc if and only if the zeros of S5 (z) do.
Observe that

* 1 1 1)) _n— 1)) n—
—55(2) = s+ 150 gz 4 oo+ 1502772 4 5§D |21
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If |s(()1)\ > |s§1)| > 0, the coefficients of —Sj(z) are ordered and by the Enestrom-Kakeya
Theorem, the zeros of —Sj(z) lie in |z| < 1. As the zeros of S7(z) and —S7(z) are the same, the
zeros of S7(z) lie in |z| <1 too.

But

15071 = s =y +2 - 1) > 0.

Then, ]s(()l)| > |s§1)\ is equivalent to v > X — 2.

So, for v > A — 2, S(z) has all its zeros in |z| < 1.

Now we prove that, if ¥ < A — 2, S(z) has at least one zero outside the unit disc.
As

s = 150 = vy +2 - V),

|sél)| < |S£lel| is equivalent to v < A — 2.
By the Vieta’s formula, we have

E
ClCQ"'C:nfl = (_1)71—1 (1)1;
S0
where (;, i =1,...,n — 1, are the zeros of Sj(z).
So, if v < A — 2, follows that
s
n—1
GG Cnt] = | =7 | > L
S0

Then, at least one zero of S} (z) lie outside the unit disc and, consequently, S(z) has at least
one zero outside the unit disc. O

Remark 2.4. For v = 0 we have S(z) = R(z) and the zeros of S(z) lie on the unit circle under
the conditions of Theorem 2.1.

3 Numerical Examples

5
Example 3.1. Let us consider the polynomial R(z) = 1 + 3 (z—i— 22+ z3) + 2. Figure 1

displays the zeros of R(z) (represented by e) and S(z) for v = 0.5 (represented by *). Note that
the conditions of Theorem 2.1 are satisfied and the zeros of R(z) lie on the unit circle. From
Theorem 2.3 the zeros of the perturbed polynomial S(z), for all v > 0, lie inside or on the unit
circle.

Example 3.2. Let us consider the polynomial R(z) = 1+ 224222 +223 4224 +22° 4 25. Figure
2 displays the zeros of R(z) (represented by e) and S(z) for v = 0.8 (represented by *). The
conditions of Theorem 2.1 are satisfied and the zeros of R(z) lie on the unit circle (from Remark
2.2, z = —1 is a zero of multiplicity 2 of R(z)). From Theorem 2.3 the zeros of the perturbed
polynomial S(z), for all v > 0, lie inside or on the unit circle.

DOI: 10.5540/03.2015.003.01.0008 010008-4 © 2015 SBMAC


http://dx.doi.org/10.5540/03.2015.003.01.0008

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 3, N. 1, 2015.

05

5

Figure 1: Zeros of S(z) = 1 + Figure 2: Zeros of S(2) = 1+22+22%+
5 3 4 5 6 _
7(2_{_2,24_23)(1_{_7)24 for v = 0 22° 422+ 222+ (1 +7)2° for vy =0
3 (dots) and v = 0.8 (stars).

(dots) and v = 0.5 (stars).

Example 3.3. Let us consider the polynomial R(z) = 1+4(z + 22+ 23) + z%. Figure 3 displays
the zeros of R(z) (represented by ) and S(z) for v = 2 (represented by *) and v = 4 (represented
by +). As A =4 > 2, from Theorem 2.1 R(z) has one real zero in (—oo,—1). From Theorem
2.3, the zeros of S(z) lie inside or on the unit circle when v > 2 and for 0 < v < 2, S(z) has at
least one zero outside the unit circle.

Figure 3: Zeros of S(z) = 1+4(z+ 224 2%) + (1 +7)z* for y = 0 (dots), v = 1 (stars) and v = 2
(plus).
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