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Abstract. Electromechanical systems are an interesting type of coupled systems. They are com-
posed by two subsystems with different nature: mechanical and electromagnetic. The subsystems
interact. To represent the dynamics of a coupled system, it is necessary to properly characterize
their interaction. The dynamics of an electromechanical system is given by an initial value prob-
lem (IVP) comprising a set of coupled differential equations involving, necessarily, mechanical and
electromagnetic variables. Despite the ubiquity of electromechanical systems, a few authors do
not parametrize them properly. Frequently, by some artifice, strange to the problem, the coupled
system is uncoupled disregarding the electromagnetic subsystem. Hence, the uncoupled system
has a different dynamics, resulting a reduced IVP with only a mechanical equation. This paper
discusses this uncoupling using as example a galvanometer, a well-known measuring device. To
analyze the effects of the decoupling, numerical simulations of the two IVP, complete and reduced,
are performed.
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1 Introduction

Electromechanical systems are composed by two coupled subsystems: a mechanical and an
electromagnetic [1,10,12]. To properly describe the dynamics of an electromechanical system, it is
not sufficient to describe the dynamics of each subsystem separately. It is necessary to characterize
the interaction between them. The dynamics is given by an initial value problem (IVP) comprising
a set of coupled differential equations. This set involves mechanical and electromagnetic variables
and initial conditions. The dynamics of an electromechanical system can be found by the Lagrange
method, an energetic method. The Lagrange function must have a term that couples the mechanical
and the electromagnetic subsystems and creates a energy flux between them [2,3].

Even though electromechanical systems are found in several applications, it is still a challenge
to find references correctly describing their dynamics. Published papers, books and thesis present
numerous mistakes in the formulation of the dynamics of this type of system. They uncouple the
mechanical and an electromagnetic subsystems by neglecting the existence of inductance in the
electromagnetic subsystem and assuming a functional relation between mechanical and electro-
magnetic variables. Therefore, the system is characterized by only mechanical variables and the
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dynamics is reduced to an IVP with only a mechanical equation [4–8, 11]. Some references that
makes the reduction are references 1, 2 and 3 of [6] and reference 4 of [5].

Apparently, the reduction is useful, since it simplifies the dynamics greatly. The reduced
IVP is easier to handle. However, the reduction changes the dynamics. The reduced IVP does
not represent the complete system and moreover, decouples the electromagnetic and mechanical
subsystems. The dynamics of the electromagnetic subsystem is ignored and the space phase is
maimed (it just has the variables of the mechanical subsystem). The paper’s main objective is to
show that reduction changes the dynamics using as example a galvanometer, a measuring device.

This paper is organized as follows. Section 2 describes the galvanometer and the mechanical and
electromagnetic variables used to characterize the system state. In Section 3, the galvanometer’s
dynamics is found by Lagrange method. In Section 4, the reduced IVP with only a mechanical
equation is presented. To compare and verify the differences between the complete and reduced
dynamics, numerical simulations of the two IVP were performed using the software MATLAB. The
results are shown in Section 5 and the conclusions in Section 6.

2 Galvanometer

A galvanometer is an electromechanical system used to measure electric currents with low
intensities. It is composed by a circuit with inductance l, resistance r, a permanent magnet,
torsion springs with stiffness k, a damper b, a fix iron core with height L, diameter 2d and moment
of inertia j, a coil involving the core and a pointer connected to the core. The coil has many turns
and it is pivoted on a bearing. It can rotate in the magnetic field produced by the magnet. The
generalized variables used to represent the system dynamics are the current q̇ and the pointer’s
angle θ. It is not taken into account capacitance in the system. The system is sketched in Figure 1.

When the galvanometer is submitted to a voltage υ, a current, q̇, is generated in the circuit of
the system. When this current passes through the moving-coil, creates a magnetic field B. The
interaction between this induced field and the field produced by the magnet produces a torque
in the coil. This causes the coil to rotate and the pointer to deflect over a graduated scale. The
torques generated by torsion spring and damper, mounted on the bearing and coiled in opposite
direction, balance the electromagnetic torque.

Figure 1: Galvanometer [9].

3 Lagrangian formulation for a galvanometer

The Lagrangian function for an electromechanical system [10] is written as:
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Γ = T ∗ − V + E∗
m − Ee ± U∗, (1)

where T ∗ is the kinetic co-energy, V the potential energy, E∗
m the magnetic co-energy and Ee

the electric energy. The coupling term U∗ can have an electric or magnetic origin and it’s signal
depends on this fact. If it is transmitted as a magnetic coupling (U∗

m), the signal is positive and if
it is transmitted as an electric one (U∗

e ), the signal is negative.
The modulus of the electromagnetic torque generated over the coil is τB = q̇BdL, where B

is the magnetic field considered constant. Representing the constant BdL as γ and the magnetic
co-energy is then given by U∗

m = γq̇θ.

The other energies in the system are T ∗ =
jθ̇2

2
, V =

kθ2

2
, Ee = 0, E∗

m =
lq̇2

2
. Therefore, the

Lagrangian function for the galvanometer is

Γ =
jθ̇2

2
− kθ2

2
+
lq̇2

2
+ γq̇θ, (2)

where Γ is given in joules. The units of j is kilogram per meter squared, of k is newton per meter,
l is given in henry and the unit of γ is meter squared tesla. Also, the variables θ, θ̇ and q̇ are given
in radians, radians per seconds and amperes, respectively.

The virtual work is:

δf = υ δq, δd = r q̇ δq + b θ̇ δθ → δW = δf − δd = υ δq − r q̇ δq − b θ̇ δθ.

The dynamics equations can be found doing
d

dt

(
∂Γ

∂θ̇

)
− ∂Γ

∂θ
=

dδW

dδθ
,

d

dt

(
∂Γ

∂q̇

)
− ∂Γ

∂q
=

dδW

dδq
.

(3)

The IVP that gives the galvanometer dynamics is: given a source voltage υ, find (θ, q̇) such
that, for all t > 0, {

jθ̈ + bθ̇ + kθ − γ q̇ = 0,

lq̈ + rq̇ + γ θ̇ = υ,
(4)

with the initial conditions θ̇(0) = ω0 rad/s, θ(0) = θ0 rad and q̇(0) = c0 A.

4 Reduced IVP with only a mechanical equation

In this section we will discuss an artifice used in many references that deals with electromechan-
ics systems. This artifice, apparently useful, simplifies the system dynamics. It reduces the IVP
that gives the dynamics of an electromechanical system into a simpler IVP with only mechanical
variables. However, the reduction causes the uncoupling of the mechanical and electromagnetic
subsystems. After the reduction, the system becomes a purely mechanical system. In the case of the
galvanometer, the reduction is done neglecting the existence of the inductance in the electromag-
netic subsystem and assuming a functional relation between the mechanical and electromagnetic
variables, θ and q̇.

Neglecting the existence of the inductance in the second equation of the IVP given in (4), it is
possible to write

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 8, n. 1, 2021.

DOI: 10.5540/03.2021.008.01.0459 010459-3 © 2021 SBMAC

http://dx.doi.org/10.5540/03.2021.008.01.0459


4

q̇ =
υ − γθ̇
r

, (5)

where q̇ is given in amperes. Eq. (5) gives a functional relation between q̇ and θ. Substituting this
functional relation in the second differential equation of the complete IVP, we obtain a reduced
IVP with only mechanical variables and initial conditions. Given a constant source voltage υ, find
θ such that, for all t > 0,

θ̈ +

[
b+

γ2

rj

]
θ̇ +

[
k

j

]
θ =

[
γ

rj

]
υ, (6)

with the initial conditions θ̇(0) = ω0 rad/s, θ(0) = θ0 rad. The current q̇ can be computed after
the reduced IVP is solved by Eq. (5).

Calling ξ =
rb+ γ2

2r
√
kj
, ωn =

√
k

j
, p =

γ

kr
, Eq. (6) can be rewritten as:

θ̈ + 2ξωnθ̇ + ω2
nθ = ω2

npυ. (7)

The solution of the reduced IVP is given by

θreduced(t) = e−ξωnt

[
(θ0 − pυ)cos(wdt) +

(
ω0 + ξwn(θ0 − pυ)

wd

)
sin(wdt)

]
+ pυ [rad]. (8)

Then, it is possible to write

θ̇reduced(t) = −ξwne−ξωnt

[
(θ0 − pυ)cos(wdt) +

(
ω0 + ξwn(θ0 − pυ)

wd

)
sin(wdt)

]
+

e−ξωnt [−wd(θ0 − pυ)sin(wdt) + (ω0 + ξwn(θ0 − pυ)) cos(wdt)] , (9)

Here, θreduced(t) is given in radians and θ̇reduced(t), in radians per seconds.

5 Comparison between the complete and reduced IVP

A routine was developed in the software MATLAB to simulate the complete and reduced IVP.
Comparing the system response over time and phase portraits for the two IVP, it is possible to see
how the reduction changes the dynamics.

The complete IVP was integrated by the 4th − 5th order Runge-Kutta method with the ode45
MATLAB function. The time-step used was 0.002 seconds and the time interval [0, 200] seconds.
The parameters used in all simulations, chosen to highlight the effects of the uncoupling, are
j = 0.50 kg/m2, b = 0 Ns/m, k = 0.20 N/m, γ = 1.00 m2T, l = 10.00 H, r = 10.00 Ω and υ = 1 V.

To analyze the influence of initial conditions in the system response, two groups of values were
selected.

� Case I: null initial conditions for the complete and reduced IVP.

� Case II: θ(0) = 1 rad for the complete and reduced IVP and zero for all others initial
conditions.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 8, n. 1, 2021.

DOI: 10.5540/03.2021.008.01.0459 010459-4 © 2021 SBMAC

http://dx.doi.org/10.5540/03.2021.008.01.0459


5

(a) (b)

Figure 2: (a) Angle θ over time for complete and reduced dynamics for case I and (b) case II.

Figure 2 shows θ(t) over time for the complete and reduced IVP, red and blue curves respectively,
for cases I and II. Please observe that both curves tend to the same value, 0.5 rad, when t grows.
However the damping factors are distinct. The reduced IVP is more damped than the complete
one.

Figures 3(a) and 3(b) show the phase portraits of the variables θ̇ and q̇ for the complete and
reduced IVP. Observing the results, one sees immediately the differences between the results. While
for the complete IVP, there is no functional relation between θ̇ and q̇, for the reduced IVP, there
is a functional relation between θ̇ and q̇. This functional relation is given by Eq. (5). The lack of
a functional relation is the essence of coupling.

Comparing Figures 3(a) and 3(b) it is possible to verify also that influence of the initial condi-
tions in the response of the complete and reduced IVP. For the reduced IVP, the change of initial
conditions from case I to case II causes a small modification in the phase portraits of the variables
θ̇ and q̇. On the other hand, for the complete IVP, the change of initial conditions from case I to
case II modifies a lot the phase portraits. The red curve of Figure 3(a) is very different from the
red curve of Figure 3(b).

Figures 4(a) and 4(b) show the phase portraits of τ and θ̇. Please observe again the functional
relation between τ and θ̇ in the reduced IVP.

6 Conclusions

Electromechanical systems are composed by two subsystems with different origins: mechanical
and electromagnetic. The dynamics of an electromechanical system is given by an initial value
problem with coupled differential equations. These equations involve mechanical and electromag-
netic variables.

This paper analyzes a common error found in the literature that deals with electromechanical
systems. Here, the error is discussed in the context of an galvanometer, but it the literature, the
error appears in many different contexts [4–7, 11]. The error is an artifice to simplify the system
dynamics. It reduces the IVP that gives the dynamics of an electromechanical system into a simpler
IVP with only mechanical variables. After the reduction, the system becomes a purely mechanical
system. Apparently, the reduction is useful, but it changes the dynamics.
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(a) (b)

Figure 3: (a) Phase portrait of θ̇ and q̇ for case I and (b) case II.

(a) (b)

Figure 4: (a) Phase portrait of τ and q̇ for case I and (b) case II.
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