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Grahps of stable plane-Gauss maps
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Abstract: In this paper, we present immersions of a given closed and oriented surface M in R3,
where the two applications are stable: projection on the plane xy and a Gauss map . The projection
on the plane can be seen as a stable map of surfaces on the plane.
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1 Introduction

The singular set of stable maps from closed surfaces M to the plane consists of curves of double
points, possibly containing isolated cusp points [4]. The apparent contour (i.e. the image of the
singular set) is the number of immersed curves in R2 (possibly with cusps) whose self-intersections
are all transverse and disjoint from the cusps. Graphs associated with the global study of stable
applications of closed surfaces and oriented in the plane, was introduced in [6]. The singularities
of a stable Gauss map, in Whitney’s sense, being fold curves with isolated cusp points, are called
the parabolic set of the surface ( [1, 2, 9]). Each parabolic curve in this set separates a hyperbolic
region from an elliptic region of the surface. Graphs associated with the global study of stable
Gauss applications of closed surfaces and oriented in the plane, was introduced in [7].

The purpose of this work is to present immersion constructions of closed and oriented surfaces
in 3-space, with the coordinate system (x, y, z), where the two maps are stable: projection on the
plane xy, which can be seen as maps of surfaces in the plane, and the Gauss map. We show that
any pair of trees can be realized as a graph of a pair of maps, one of them is a Gauss map and the
other a map of the sphere in the plane.

2 Stable maps

Let M and N be smooth connected closed orientable surfaces and f, g : M → N be smooth
maps between them. It is said that f is A-equivalent (or equivalent) to g if there are orientation-
preserving diffeomorphisms, k : M → M and l : N → N , such that g ◦ k = l ◦ f . A smooth map
f : M → N is said to be stable if all maps sufficiently close to f , in the Whitney C∞-topology
(see [4]), are equivalent to f .
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The concept of stability for a Gauss map of a surface immersed in R3 is slightly different from
the general case of maps between surfaces in the sense that it depends on perturbations of the
immersion rather than on those of the map itself.

Let j : M → R3 be an immersion of M in R3. Consider the following maps:

1. A stable projection pv : j(M) → P ⊂ R3, where P is a orthogonal plane to v ∈ R3 and pv
is the restriction to j(M), of the projection of R3 in P. A diffeomorphism g : P → R2 and
f2 : M → R2 given by f2 = g ◦ pv ◦ j.

2. Gauss map Nj : j(M)→ S2 of j(M) and f3 : M → S2 given by f3 = Nj ◦ j.

In this case, the map f3 is called Gauss map of M , associated to the immersion j. The Gauss map
Nj is said to be stable if there exists a neighborhood Uj of j in the space I(M,R3) of immersions
of M into R3 such that for all k ∈ Uj , the Gauss map Nk associated to k is A-equivalent to Nj .

Definition 2.1. We say that the smooth map f = (f2, f3) : M → R2 × S2 is a stable plane-Gauss
map if each fi, i = 2, 3, is a stable map.

Let f = (f2, f3) : M → R2 × S2 be a stable plane-Gauss map. A point of the surface M is a
regular point of fi, (i = 2, 3), if the map fi is a local diffeomorphism around that point and otherwise
singular. We denote by Σfi the singular set of fi and its image Bfi = fi(Σfi) is the branch set of
fi. We observe that regular points of f3 corresponds, geometrically, to elliptic or hyperbolic points
of j(M). Singular points of f3 corresponds to parabolic points of j(M) (see [7]). By Whitney’s
Theorem (see [4]), Σfi consists of closed curves with fold points, possibly containing isolated cusp
points. Then the branch set of fi, consists of a collection of closed curves immersed in the target
surface with possible isolated cusps and self-intersections (double points). The orientation of the
branch set is as follows: transverse a branch curve following the orientation with nearby points on
our left that have two more inverse images than those on our right. The non-singular set (which
is immersed in the target surface by the map fi) consists of a finite number of regions.

3 Graph of stable plane-Gauss maps

The singular sets of two equivalent maps are equivalent, in the sense that, there is a diffeomor-
phism carrying one singular set onto the other and similarly for the branch sets. Thus any invariant
diffeomorphism of singular sets or branch sets will automatically be a topological invariant of the
map. Both the number of connected components of the singular set and the topological types
of the regions are topological invariants. This information may be encoded on a weighted graph
Gi(V i, Ei,W i), where the pair (M,Σfi) may be reconstructed (up to diffeomorphism) (see [6, 7]).
On the weighted graph Gi(V i, Ei,W i) defined by a stable map fi each of its Ei edges corresponds
to a path-component of the singular set of M and each of its V i vertices to a different regular
region of the surface. An edge is incident to a vertex if and only if the corresponding singular
curve to the edge lies in the boundary of the regular region corresponding to the vertex (see Figure
1). A weight is defined as the genus of the region that represents and it is attached to each vertex.
The number W i is the sum of weights of all graph vertices. It will be called total weight of the
graph. When W i = 0, we will denote the graph simply by Gi(V i, Ei) (i = 2, 3).

It is remarkable that V i represents the number of connected components of M \ Σfi; E
i the

number of connected components of Σfi and W i the total sum of the genus of the components
of M \ Σfi. Given orientations of the surfaces M , R2 and S2, a region of M \ Σf2 is positive if
the map preserves orientation and negative otherwise. A region of M \ Σf3 is positive if it has
positive Gaussian curvature and negative otherwise. A vertex of Gi(V i, Ei,W i) has a positive (or
negative) label depending on whether the region that it represents is positive (or negative). Since
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each component of Σfi is the boundary of a positive and a negative region, the signs of the vertices
are assigned alternatively, hence the graph associated to stable map fi is bipartite. We denote by
V i± the number of positive (negative) vertices and W i± the total weight associated to the positive
(negative) vertices.

Figure 1 illustrates an embedding of the torus in the 3-space, where f2 is a map of the torus in
the plane and f3 is a Gauss map. Let us remark that the sets of singular curves of these maps f2
and f3 are not equivalent.

Figure 1: Example of stable plane-Gauss maps.

Definition 3.1. Let G be a connected graph with non-negative integer weights on its vertices. We
say that G is a (see Figure 1):

1. Mendes-graph or simply M-graph if exists a smooth connected closed surface M , a smooth
surface N and a stable map f2 : M → N such that G is the graph of f2 (in the sense of [6]).

2. Fuster-graph or simply F-graph if exists a smooth connected closed surface M and an im-
mersion j : M → R3 whose stable Gauss map f3 : M → S2, associated to j, has G as its
associated graph (in the sense of [7]).

The Figure 1 illustrates the stable maps f2 : S2 → R2, whose M-graph type G21(4, 6, 0), and
f3 : S2 → S2, whose F-graph type G32(3, 2, 1).

3.1 Graph of stable plane-Gauss maps

The graph Gi(V i, Ei,W i) is a global invariant and it classifies completely the topology of the
stable maps regular set of fi. Moreover, it will be used as a tool for the construction of examples
of stable maps between surfaces.

The maps illustrates f2, g2 : S2 → R2 in Figure 2 are non equivalent, where j′is indicates the
respective embedding from S2 in R3 and pv, v = e3, the canonical projection. This example shows
that the M-graph is an invariants, because the apparent contour sets of f2 and g2 can not differ.

Figure 2: Examples of M-graph and F-graph type tree.
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Definition 3.2. Let f = (f2, f3) : M → R2 × S2 be a stable plane-Gauss map. We denote the
graph of f by (G2,G3), where G2 is the graph of f2 and G3 the graph of f3.

Definition 3.3. We say that the pair of graphs (G,H) is aMF-graph if exists a stable plane-Gauss
map f = (f2, f3) : M → R2 × S2 such that the graph of f2 is G the graph of f3 is H.

Given a closed and oriented surface M , by Definition 3.2, every stable plane-Gauss map (f2, f3) :
M → R2 × S2 is associated with an MF-graph. Some natural questions can be considered:

i) Is every graph GH an MF-graph?

ii) Otherwise, what conditions should we impose on a graph GH in order to be an MF-graph?

The motivation of the study on these pairs of graphs is find answers to these questions, among
others. We will see some constructions of these maps that can lead to future answers to these
questions in the general case.

4 Lips and beaks transitions of plane-Gauss maps

We can always obtain a new stable plane-Gauss map, associated with new MF-graphs by
changing the immersion of M in R3. These alterations can be made changing the Gauss maps
f3 : M → S2 and can change at the same time, or not, the image of the f2 : M → R2, depending
on the map in the plane or changing f2 without varying f3.

A codimension one transition corresponds to the intersection of the set ∆, of non-stable maps,
with generic isotopy from a given stable map fi to another stable map gi (i = 2, 3) that are in
different path-components of E(M,N). In other words, this means that codimension one transition
is the point at which a path between fi and gi transversely intersects a strata of ∆. The types
of transitions are described in [8], in the case of surfaces in the plane and the case of Gauss maps
( [3,7]). For lips and beaks transitions that changes the number of cusps of each fi, the edge number
of the graph, the number of vertices or the weight of the graphs, fulfills g(M) = 1− V i +Ei +W i

(i = 2, 3) is constant. For more details, see [6, 7].

Definition 4.1. A cusp point x ∈ Σfi (i = 2, 3) is called positive (resp. negative) if its local
mapping degree, in a neighborhood Ux of x is +1 (resp. −1) with respect to the given orientations.

i) Lips transition L±i of map fi (i = 2, 3): increases the number of cusps and increases by 1
the number of singular curves of fi: L+

i increases by 1 the number of regions negative and L−i
increases by 1 the number of regions positive. Consequently, L±i increases one vertex and one edge
on the graph Gi.

ii) Beaks transition Bi of map fi (i = 2, 3): increases the number of cusps. Beaks transitions
of fi can be classified in eight different transitions that change the graph Gi (see Figure 3):

B+,±
vi : increases by 1 the number of vertices in V i± and the number of edges Ei.

B−,±vi : decreases by 1 the number of vertices in V i± and the number of edges Ei.

B+,±
wi : increases by 1 the weight in W i± and decreases by 1 the number of edges Ei.

B−,±wi : decreases by 1 the weight in W i± and increases by 1 the number of edges Ei.

A transition δ ∈ {L±i , B
±,±
vi , B±,±wi } that decreases the number of cusps, will be denoted by −δ.

Figure 3 illustrates a sequence of transitions on the sphere that simultaneously change the
M-graph and the F-graph.
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Remark 4.1. The beaks and lips transitions for maps in the plane, can change or not the F-
graph (see Figure 3). Similarly, beaks and lips for Gauss maps can change or not the M-graph, as
illustrates the Figure 4.

Figure 3: Transitions that change the M-graph and F-graph.

Figure 4: Transitions that only change the F-graph.

Remark 4.2. Note that the sequence of transitions, in Figure 4, does not change the M-graph it
also does not change the apparent contour. This shows that the graph of the Gaussian map is an
invariant that helps to refine the classification of maps in the plane.

Figure 5: Example of MF-graphs with cycles.

Figure 5 shows a sequence of stable maps of the torus with their graphs with transitions that
changes the topology of parabolic curves keeping invariant the topology of map curves in the
plane. In: (a) (G2(2, 2, 0),G3(2, 2, 0)), each parabolic curve of f3 has 4 cusp points: two positive
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and two negative (see [7]); (b) is obtained from (a) by transitions −B−,−w3 ; it removes the pairs of
positive cusps of f3, leaving the new map with a elliptic region of genus one and one hyperbolic
regions simply connected; (c) is obtained from (b) by transitions −B−,−v3 ; dividing the parabolic
curve and the hyperbolic region into two components; (d) is obtained from (c) by transitions
−B+,+

w3 , which decomposes a parabolic curve and removes the genus from the elliptic region and
is followed by −B−,+v3 which decomposes the following parabolic curve, obtaining a map with 4
parabolic curves that separates two elliptic regions from two hyperbolic regions, all homeomorphic
to the cylinder and with zero weight graph (G2(2, 2, 0),G3(4, 4, 0)); (e) is obtained from (d) by
transitions L+

3 followed by −B−,+v3 , creating a new elliptic and hyperbolic region with the graph
(G2(2, 2, 0),G3(6, 6, 0)); the same happens with the transitions from (e) to (f) that realizes the graph
(G2(2, 2, 0),G3(8, 8, 0)). We can obtain a stable map that realizes the graph (G2(2, 2, 0),G3(V, V, 0)),
without changing the M-graph in the following way (see Figure 5-(e) and (f)).

5 Realization of some trees with total weight zero

In this section we present some families of graphs G2G3 that are MF-graphs, that is, graphs
that can be realized by stable plane-Gauss maps in the sense that there is a smooth connected
closed orientable surface M and a stable plane-Gauss map f = (f2, f3) : M → R2 × S2 such that
the graph of f is (G2,G3). This will be done through beaks transitions and lips on smaller maps
already known. The results here will only be valid for zero weight graphs. For weight greater than
zero will be treated in later works.

Before introducing the general result tree-type graphs (which satisfies V = E + 1) with
zero weight and some graphs with cycles in general, we will see some examples of realization.
(G2(2, 1, 0),G3(1, 0, 0)) can be realized (see Figure 4-(a)) by a S2 embedding in the 3-space with all
elliptic points, which projected in a plane has a unique singular curve, which separates two regular
regions. (G2(2, 1, 0),G3(2, 1, 0)) can be realized as Figure 4-(b), by lip transition L+

3 on (a) on one
of the regular regions f2, without changing Σf2.

Definition 5.1. The degree of a vertex v in a graph is the number of edges incident to it. A tree
it is called star positive (negative) if it has V − 1 negative vertices (positive) with degree 1.

Theorem 5.1. The pair of graphs (G2(2, 1, 0),G3(V, V − 1, 0)) is an MF-graph, for all V > 0.

Proof. We have shown that (G2(2, 1, 0),G3(1, 0, 0)) is anMF-graph. To realize the couple G2(2, 1, 0)G3(V, V−
1, 0) remove a negative (or positive) vertex, of degree 1, from G3(V, V − 1, 0) and suppose the pair
(G(2, 1, 0),G(V −1, V −2, 0)) realizes by a map (g2, g3) : S2 −→ R2×S2. Through the lips transition
L+
3 (or L−3 ) on (g2, g3), without changing the Σf2 (Remark 4.1), we can get a map (f2, f3) which

realizes the pair with G3(V, V − 1, 0).

Corollary 5.1. The pair of graphs (G2(2, 1, 0),G3(V, V − 1, 0)), where G3 is a star with V > 0, is
an MF-graph.

Theorem 5.2. Every pair of graphs (G2(V, V − 1, 0),G3(2, 1, 0)), with V > 1, is an MF-graph.

Proof. We have shown that (G2(2, 1, 0),G3(2, 1, 0)) is anMF-graph. To realize the couple (G2(V, V−
1, 0),G3(2, 1, 0)) remove a negative (or positive) vertex, of degree 1, from G2(V, V − 1, 0) and sup-
pose the pair (G2(V − 1, V − 2, 0),G3(2, 1, 0)) realizes by a map (g2, g3) : S2 −→ R2× S2. Through
the lips transition L+

2 (or L−2 ) on (g2, g3), without changing the Σf3, we can get a map (f2, f3)
which realizes the pair with G2(V, V − 1, 0).

Corollary 5.2. The pair of graphs (G2(V, V − 1, 0),G3(2, 1, 0)), where G2 is a star with V > 1, is
an MF-graph.
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Theorem 5.3. All graph (G2(V 2, V 2−1, 0),G3(V 3, V 3−1, 0)), with V 2, V 3 > 1, is anMF-graph.

Proof. (G2(2, 1, 0),G3(V 3, V 3 − 1, 0)) can be realized by a map (f12 , f
1
3 ) as Theorem 5.1. Then,

chooses the hyperbolic and elliptical regions corresponding to vertices the ui and vi in the neigh-
borhood of the parabolic curve associated with edges uivi, of G3(V 3, V 3 − 1, 0). Lips transitions
can be applied to one of the regular regions of (f12 , f

1
3 ), as in Theorem 5.2, properly, to obtain a

map (f2, f3) that realizes the graph (G2(V 2, V 2 − 1, 0),G3(V 3, V 3 − 1, 0)), without changing the
topology of the singular set of f3.

6 Conclusions

All pair of graphs (G2(V 2, V 2 − 1, 0),G3(V 3, V 3 − 1, 0)), with V 2, V 3 > 1, can be associated to
an immersion j : S2 → R3, where are stable the projection pv : j(S2)→ P ⊂ R3 (P is a orthogonal
plane to v ∈ R3 and pv is the restriction to j(S2), of the projection of R3 in P) and the Gauss map
Nj : j(S2)→ S2 of j(S2).
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