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Abstract. The problem of obtaining a Minimum Volume Enclosing Ellipsoid (MVEE) of a given
point set C = {x1, . . . , xn} ⊆ Rn is found in several practical applications. This paper proposes an
alternative methodology to build these ellipsoids of minimum volume through a metaheuristic based
on the Biased Random-Keys Genetic Algorithm (BRKGA) in order to reduce the computational
cost in solving n-dimensional MVEE problems. The formulation was implemented in Python and
compared with the CVX package implemented in MATLAB for 10 two-dimensional instances. The
results showed that BRKGA generated solutions with a high level of accuracy and low computational
cost.
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1 Introduction

The problem of obtaining a MVEE a certain number of points C has multiple applications
in statistics and optimal design, integer programming, computational geometry, randomized al-
gorithms for computing polytope volume, placing relay antennae, and packing [1]. In the area
of robust statistics and data mining, efficiently finding outliers is a challenge that has attracted
research interest [9].

The MVEE problem can be computed by several algorithms. Algorithms that use the interior
point approach were introduced by Zhang et al., and Khachiyan and Todd. The one provided
by Barnes relies on quadratic programming. There are other algorithms of the stochastic type,
introduced by Gärtner and Schönherr. Other studies of the problem are by Yildirim et al. [1].
An algorithm based on Genetic Algorithm (GA) is proposed in [1]. Although the authors have
obtained satisfactory results for some instances, the strategy used to obtain future generations
from crossover and mutation operators, as well as the construction of the fitness of the MVEE
problem use random numbers entered arbitrarily by the authors [1].

From the bibliographic review, it is noted that the works developed on the theme do not usually
address bio-inspired algorithms in the search for optimal solutions, mainly due to the difficulty of
adapting evolutionary operators, as well as the fitness function. Hence, the objective of this paper
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is to propose an alternative, computationally competitive, that provides high quality solutions for
the MVEE problem using an evolutionary approach based on BRKGA metaheuristic [2]. It requires
a suitable representation of the solutions, a modified fitness function as well as suitable crossover
and mutation operators, and stopping criteria. The paper is organized as follows. Section 2 is the
formulation MVEE problem. Section 3 is the proposed implementation of BRKGA for solving the
MVEE. The results are shown in the Section 4. The Section 5 is the conclusion.

2 Formulation of the MVEE Problem

Consider a nonsingular affine map of the form Φ(x) := Ax + b, where Φ : Rn → Rn is linear
and b ∈ Rn is a constant vector. An ellipsoid in Rn is the image of the unit ball Bn ⊆ Rn under
Φ(x). The ellipsoid can be defined by

EA,b = {x ∈ Rn | (x− b)TA−1(x− b) ≤ 1}, (1)

where b is the center of the ellipsoid, A ∈ Rn×n, and A = AT � 0.
The MVEE or Löwner-John ellipsoid [4] of a set C is the minimum volume ellipsoid that contains

set C. Computing the MVEE of a set C is equivalent to computing the MVEE of a polytope that
is defined by the convex hull of those points. Thus, the MVEE problem can be defined as

minimize f(A, b) = log(det(A−1))

subject to ‖Axi + b‖2 ≤ 1, i = 1, . . . , k,

A = AT � 0.

(2)

The volume of EA,b is given by the formula [9]:

VEA,b =
πn/2

√
det(A−1)

Γ(n/2 + 1)
, (3)

where Γ(·) is the standard gamma function of calculus.
As mentioned earlier, there are several methods and software that do not use bio-inspired

algorithms to obtain solutions to the problem (2). For example, the CVX package implemented
in MATLAB [3], uses the Path-Follow Infeasible Interior-Point algorithm to solve (2). Instances
of the model described in (2) can be submitted to this package directly. However, n-dimensional
problems have high computational costs. Figure 1 illustrates the solutions obtained by the CVX
package and through the proposed technique based on BRKGA. The data shown in the Figure 1
is the set of points xi ∈ R2, i = 1, . . . , 30 randomly generated in the domain [−10, 10]× [−10, 10].

From the Figure 1, it can be seen that both CVX and BRKGA obtained satisfactory results for
the two-dimensional problem. However, as the size of the problem increases, the computational
cost of iterative algorithms increases as well. In this way, a way to reduce the computational cost,
but maintaining an acceptable level of precision of the solutions is to explore the metaheuristics,
as well as to implement them in programming languages of high numerical performance, e. g.,
C/C++, Julia or Python [5].

3 Formulation of the MVEE Problem via BRKGA

The proposed technique to minimize (2) is based on BRKGA [2]. BRKGA is an evolutionary
metaheuristic for combinatorial optimization problems, whose solutions are represented by a vector
of m random keys, where a random key is a real number, generated randomly, in the continuous
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(a) Solution via CVX (MATLAB). (b) Solution via BRKGA (Python).

Figure 1: MVEE problem implemented in CVX vs. BRKGA.

interval [0.1). A decoder maps this vector to a solution to the optimization problem and calculates
the cost of this solution. The BRKGA population is made up of P vectors of random keys, with
|P| = m. In each generation, the vectors are partitioned into a small set with the best individuals,
called the elite set SE , and the rest are allocated in a set called non-elite SNE (|SNE | = |P|− |SE |).
All elements of SE are copied without change for the next generation population. A small number
of random key vectors are mutated and are also added to the next generation population. The
rest of the next generation population consists of solutions generated by the uniform combination
of solution pairs (crossover), in which one solution is elite and the other non-elite [2].

3.1 Solution representation

The BRKGA was designed for combinatorial optimization problems, having a wide application
in engineering problems [6], [7], [8], but it also has applications in the field of continuous optimiza-
tion. Consider f(A, b) defined in (2). In R2, A is a 2 × 2 matrix corresponding to four variables
and b is a 2 × 1 column vector corresponding to two variables. In this way, in Rn, a solution for
(2) can be represented as a one-dimensional array with n(n + 1)/2 inputs of matrix A (A = AT )
and inputs of vector b, that is (n2 + 3n)/2, or 5 in R2. In other words, chromosomes of length 5
will have to be generated to form a population of BRKGA individuals.

A symmetric matrix A is positive definite if, and only if, all eigenvalues of A are positive. In this
way, the matrix A is totally characterized by its eigenvalues and by the angle of tilt that the largest
eigenvector supports A, that is, the largest axis of the ellipsoid, forms with the x axis. Based on
this information and the chromosome representation proposed in [1], a partitioned chromosome is
defined as coding for a candidate solution in BRKGA: (i) the first n positions correspond to the
total number of axes of the ellipsoid ordered from the largest to the shorter length; (ii) the next n
positions correspond to the centre of the ellipsoid, that is, the components of the vector b ∈ Rn,
and; (iii) the last position of the chromosome corresponds to the angle of tilt θ of the largest axis
of the ellipsoid forms with the x axis.

The representation for a i-th d-dimensional chromosome Pi is Pi = [pi1, . . . , pid] and illustrated
in Figure 2, where i is an individual from the population of ellipsoids. Note in the Figure 2b
that the chromosome’s length can be generalized to d = 2n + 1, where n is a dimension of the
ellipsoid. Moreover,

√
λmax and

√
λmin represent the largest and smallest axis of the ellipsoid,

with λmax and λmin being the largest and smallest eigenvalue of A. The proposed chromosomal
representation in this paper prevents matrix A from being represented by n(n+ 1)/2 genes on the
chromosome (A = AT , A ∈ Rn×n), reducing by n(n− 1)/2− 1 the number of necessary genes, that
is, of memory space.
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(a) Two-dimensional chromosome.

(b) d-dimensional chromosome.

Figure 2: Chromosome representation of an ellipsoid.

3.2 Genetic operators for MVEE problem

From the initial ellipsoid solutions, randomly generated, BRKGA starts the process of generat-
ing new individuals by partitioning the current generation into an elite (SE) and non-elite (SNE)
population. The next step in the process of generating new individuals is to apply genetic operators
of mutation and crossover. This implementation is performed in a small number of random key
vectors by alternating one or more genes. In the BRKGA proposed in this paper, if a gene mutates,
the alteration process consists of randomly generating a value for that gene (axis of the ellipsoid,
centre or angle of tilt). The next step in the process of population evolution consists of obtaining,
from the crossover operator, new individuals according to a uniform combination of solution pairs,
one solution belonging to the SE and one belonging to the SNE . The crossover produces a new
child chromosome with potentially different axes, centres and angles of tilt. The values of the gene
of this chromosome are selected randomly among the values of the gene of the parents according
to (4). If the children generated have axes that are not in decreasing order, an ordering subroutine
is performed in the first n positions of the child chromosome to correct this imperfection.

Pk = wSE + u(tSNE − wSE ), (4)

where wSE is a chromosome randomly drawn from the SE ; tSNE is a chromosome randomly drawn
from the SNE ; u is a uniformly distributed number in the interval [0, 1], and; Pk is the k-th
chromosome resulting from the crossover between the chromosomes wSE and tSNE .

3.3 Fitness function

As shown in [1], applying metaheuristics to solve (2) can produce inaccurate individuals or
solutions with the search space, leading the algorithm to stagnation or inaccurate results. The
fitness function is based on the technique proposed in [1], but unlike this technique, the fitness
function proposed in this paper is independent on the number of points that the optimal ellipsoid
must contain, i.e., no empirical constant is created as a function of the number of points one wishes
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to surround with a minimum volume ellipsoid. Let FE the fitness of ellipsoid E represented by the
i-th chromosome Pi, C the set of points to attach and CE the set of points that ellipsoid E contains,
then FE can be defined as

FE(Pi) =

{
[e(|C|−|CE |)/10

β−1

+ VEA,b − f(A, b)]
2

, if |CE | < |C|
[VEA,b − f(A, b)]2 , otherwise.

(5)

The β constant in (5) represents the largest exponent in which the cardinality of C can be
expressed on a decimal basis. This constant has been included in (5) to avoid overflowing. The
reset process can also be included in the BRKGA framework [2]. At this stage, the BRKGA is
reinitialized every 50 generations. The BRKGA flowchart used to solve (5) is shown in Figure 3.

Figure 3: BRKGA flowchart for solving the MVEE problem.

4 Tests and Results

The proposed methodology was implemented using the Python programming language [5] with
the following computational platform: desktop with Intel Core i7-7500U processor, 2.70 GHz
CPU and 8 GB of RAM. The tests were performed for two-dimensional problems considering 10
instances. The CVX package, implemented in MATLAB [3], was used to compare the solutions
obtained by BRKGA. The BRKGA parameters [6], [7]: mutation rate: 0.5; crossover rate: 0.7;
population size (Npop): 40; elite population size: 0.2Npop; population size for crossover: 0.6Npop;
population size for mutation: 0.2Npop, and; maximum number of generations (gmax): 10000. The
gmax for BRKGA is used as a stop rule, but if the standard deviation of the fitness function is less
than or equal to 0.01 for every 2000 consecutive generations, then the BRKGA must be stopped.

The Figures 4a and 4b show the final solutions obtained by the CVX package and through
BRKGA for 500 points, respectively. The figures 4c and 4d show the 40 initial solutions generated
by BRKGA for 100 and 500 points, respectively. The Tables 1 and 2 illustrates the results obtained
for 10 instances through BRKGA and CVX considering only one execution of each algorithm.

From Table 1, BRKGA’s low cost stands out for problems involving up to 100 points. However,
for problems with hundreds or thousands of points to be involved by a minimum volume ellipsoid,
there is an increase in the computational cost of BRKGA in relation to the CVX package. Another
result to be highlighted are the good approximations obtained by BRKGA for VEA,b using a relative
number of generations as can be seen in Tables 1 and 2. In addition, Table 1 shows that the relative
errors between VEA,b obtained through BRKGA and CVX are below 5 % for all case studies, being
below 1 % for more than half of the analyzed instances.
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(a) CVX for 500 points. (b) BRKGA for 500 points.

(c) Initial solutions for 100 points. (d) Initial solutions for 500 points.

Figure 4: CVX and BRKGA solutions for MVEE problem.

Table 1: BRKGA and CVX results for 10 instances.

(|C|)
Points

Domain
(I)

BRKGA
VEA,b

BRKGA
Time (s)

(II)
CVX
VEA,b

CVX
Time (s)

(I) and (II)
error (%)
Relative

5 [20, 30]× [20, 30] 3.0714E01 16.1245 3.0416E01 2.6094 0.9794
10 [20, 30]× [20, 30] 6.3528E01 14.3237 6.3087E01 2.3906 0.6986
20 [−10, 10]× [−10, 10] 3.6565E02 33.9806 3.5165E02 2.6563 3.9802
30 [−20, 20]× [−20, 20] 1.7163E03 25.4369 1.6661E03 2.9219 3.0113
40 [−50, 0]× [−50, 0] 2.5977E03 25.1283 2.5827E03 3.3281 0.5800
50 [−50, 50]× [−50, 50] 1.0964E04 47.6350 1.0932E04 3.2813 0.2917
100 [−50, 50]× [−50, 50] 1.2769E04 47.8286 1.2439E04 3.1094 2.6540
200 [−300, 300]× [−300, 300] 4.6288E05 92.8977 4.5785E05 3.5625 1.0977
500 [−300, 300]× [−300, 300] 5.2932E05 253.2720 5.2637E05 4.8594 0.5601
1000 [−500, 700]× [−300, 800] 2.0622E06 547.3884 2.0488E06 5.4375 0.6533

5 Conclusions

This paper proposed an alternative methodology for a construction of the MVEE a set of points
using BRKGA metaheuristic. The BRKGA was implemented in Python and had its performance
compared to the CVX package implemented in MATLAB. The results for two-dimensional problems
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Table 2: Generations of the BRKGA for 10 instances.

Points (|C|) 5 10 20 30 40 50 100 200 500 1000

Generations 5582 3525 6858 3881 3032 4574 2863 3115 6055 3886

showed that BRKGA generated solutions with a high level of accuracy and low computational
cost. The authors intend to extend the methodology to n-dimensions in future works, as well as
to evaluate the performance of other metaheuristics in solving the MVEE problem.
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