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Abstract. In this work we propose an algorithm to find critical points of the inner product between
an element of the Grassmannian and a fixed point of the projective space of the exterior algebra
where the Grassmannian is embedded. This has interesting applications to electronic structure
theory, where the wave functions are represented by elements of the exterior algebra. This method
is exemplified for a Grassmannian that is a model for the hydrogen molecule, H2.
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1 Introduction and motivation

In the field of Quantum Chemistry, and in particular in electronic structure theory, one is
interested on studying the wave function associated to the electrons. All the chemical and physical
properties of atoms and molecules are to some extent related to the behaviour of their electrons, and
thus a precise characterisation of their wave function is central in modern studies in computational
chemistry (see [5], for example). From the rules of quantum mechanics, the wave functions form
a vector space and must be anti-symmetric with respect to the exchange of any two electrons, see
Chapter XIV of [7]. As shown in [8, 9], this is accomplished by representing the wave functions
as elements of the exterior algebra,

∧n V, of another vector space V, with n being the number of
electrons in the system. V is conveniently chosen to represent as best as possible the region around
the atoms where the electrons are, and its elements are called spin orbitals in this context.

The calculation of the wave function is a difficult task. Although a number of procedures and
approximations exist, with several implementations in computational packages, the development
of new methods, as well as the study of the performance and improvement of existing ones, is an
active field of research, see [6] for example. In particular, the clear understanding of the underlying
mathematical framework of these methods can be an important guide to the development of more
sophisticated and efficient procedures. With this motivation, in this work we adapt an optimisation
procedure at the Grassmannian, described in [1], for applications in computational chemistry,
with the main goal of clarifying how the geometry of this manifold is related to the quality of
the approximations used in this field of research. We will start by recalling some basic facts and
definitions about the Grassmannian, presenting the algorithm that we will use as starting point; In
Section 3 the problem we propose to solve is stated, followed by the equations we have developed,
in Section 4; The equations and the problem are put in a general and straightforward form and
thus can be used for applications other than in electronic structure theory. At the end, an example
is presented and the connection field of Quantum Chemistry is discussed.
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2 Basics: the Grassmannian and the Plücker embedding

Given a K-dimensional real vector space V, its Grassmannian or Grassmann manifold of order
n ≤ K is denoted by Gr(n,V), and is defined as the set of all n-dimensional vector subspaces of
V. See for example Chapter 1 of [4] for the definition of Grassmannians. Furthermore, the n-th
exterior power of V is denoted by

∧n V, and it is composed by all anti-symmetric (also known as
skew-symmetric) tensors of order n on V, see Chapter 8 of [3]. This is an algebra under the exterior
product, ∧. Given a basis for V, say {u1, u2, . . . , uK}, the set formed by all exterior products of
these elements, taken n by n without repetition, is a basis for

∧n V:

{uI1 ∧ uI2 ∧ · · · ∧ uIn} = {ΦI} , (1)

where I is a multi-index, running over all possible subsets of {1, 2, . . . ,K} of size n. Thus, an
arbitrary element of

∧n V is given by:

Ψ =
∑
I

cI uI1 ∧ uI2 ∧ · · · ∧ uIn =
∑
I

cI ΦI , with cI ∈ R . (2)

Some elements of
∧n V can be written simply as Φ = v1∧v2∧· · ·∧vn, with vi ∈ V (for instance,

each element of the basis in Equation (1)). However, this does not hold for all elements of
∧n V,

and the elements that can be put in this simpler form are said to be decomposable. If {vi}ni=1 is
linearly independent, it spans a n-dimensional subspace of V, say [Φ] ∈ Gr(n,V); furthermore, if
{v′i}ni=1 is another basis for [Φ], the decomposable element formed by these elements is proportional
to the first:

v′1 ∧ v′2 ∧ · · · ∧ v′n = λv1 ∧ v2 ∧ · · · ∧ vn λ ∈ R , λ 6= 0 . (3)

This is an one-to-one correspondence between the n-dimensional vector subspaces of V and the
equivalence classes of decomposable elements of

∧n V (under multiplication by non-zero elements
of R), that induces a natural embedding of the Grassmannian Gr(n,V) in the projective space of∧n V, the Plücker embedding (see, for example, Chapter 1, Section 5, of [4]):

Gr(n,V) ↪→ P
n∧
V (4)

[Φ] 7→ [v1 ∧ v2 ∧ · · · ∧ vn] , (5)

with {vi}ni=1 being any basis for the vector space [Φ]. For the sake of a simpler notation, we will not
distinguish here between the Grassmannian and its image under this embedding. We will focus on
finite dimensional vector spaces over the field of real numbers, but extensions of these definitions
to infinite dimensional vector spaces, and over other fields, are possible.

2.1 The Newton-Grassmann method of Absil and coworkers

Let V be a vector space of dimension K, and B a fixed basis for it. Given Φ ∈ Gr(n,V), let Y
be the matrix whose columns contain the coefficients of a basis of Φ on the basis of V. This is an
element of the non-compact Stiefel manifold, ST(n,K), defined as the set of all K × n matrices
of rank n. Let f : Gr(n,V) → R be a function defined on the Grassmannian with real values,
sufficiently smooth, one wants to optimise. Let

f♦ : ST(n,K) → R
Y 7→ f(span(Y )) , (6)

be the corresponding function on the Stiefel manifold, where span(Y ) is the column space of Y ,
that is identified with an element of Gr(n,V), by the canonical bijection between V and RK . The
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calculation is done now in the Stiefel manifold and, according to the method proposed by Absil
and coworkers in [1]:

• One first solves the following equation for the unknown η♦Y ∈ HY = {Y⊥K : K ∈ R(K−n)×n}:

ΠY⊥D (Π·⊥gradf♦ (·)) (Y ) [η♦Y ] = −ΠY⊥gradf♦ (Y ) ; (7)

• And then update Φ → Φnew by moving along the geodesic on the Grassmannian in the
direction of span(η♦Y ), by computing a singular value decomposition of η♦Y = UΣV T and
calculating:

Φnew = span(Y V cos Σ + U sin Σ) . (8)

In these equations, the gradient of f♦ at Y is the K × n matrix whose entries are given by

(gradf♦(Y ))pq = ∂f♦(Y )
∂Y p

q
(Y ); DF (x)[y] = d

dtF (x + ty)
∣∣
t=0

is the directional derivative of F at x

in the direction of y; and ΠW⊥ = I − W (WTW )−1WT is the projection onto the orthogonal
complement of the matrix W .

3 The problem

Given a K-dimensional vector space V, with an inner product (·, ·), let P
∧n V be the projective

space of the n-th exterior power of V (n ≤ K), and let Ψ ∈ P
∧n V be a fixed, but arbitrary, point

of this space, taken as the reference point in the following. In general, Ψ /∈ Gr(n,V) ⊂ P
∧n V.

How to find the stationary points of the function

f(Φ) =
〈Φ,Ψ〉√
〈Φ,Φ〉〈Ψ,Ψ〉

, (9)

in Gr(n,V) ⊂ P
∧n V, where 〈·, ·〉 is the inner product at

∧n V, induced by (·, ·)?

4 Solving the proposed problem by Newton-Grassmann

To solve the problem suggested in Section 3, we will use the algorithm proposed by Absil and
coworkers, described in Section 2.1. The update step Φ→ Φnew does not depend on the function
to be optimised, and it is of straightforward implementation. However, it is not obvious how to
obtain Equation (7), and this is the central objective in the present work. In the following, we will
assume a fixed orthonormal basis for the vector space V, and the induced basis for the exterior
algebra

∧n V.
First of all, given Ψ as in Equation (2), with unit norm, and Φ = span(Y ), with Y ∈ ST(n,K)

the function f is calculated as

f(Φ) = f♦(Y ) =
1√

det (Y TY )

∑
I

cI det
(
Y
∣∣
I

)
=

1√
det (Y TY )

∑
I

cI FI . (10)

Note that the term within the square root guarantees that the expression is independent on
the choice of Y ∈ ST(n,K) used to represent the vector space Φ. If Y forms an orthonormal basis
for V, such term equals one. Furthermore, since Φ is assumed to have dimension n, such term is
never zero. Although one can easily generate an orthonormal basis for Φ before calculating f♦, we
note that f♦(Y ) = f(span(Y )) must hold for all Y in the Stiefel manifold, and the normalisation
factor is important to consider when deriving Equation (7) for the present function f , even if a
normalised Y is used during actual computation.
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The notation Y
∣∣
I

stands for the submatrix of Y formed with the rows that are in the multi-index
I. For example, for

Y =


Y 1

1 Y 1
2 Y 1

3

Y 2
1 Y 2

2 Y 2
3

Y 3
1 Y 3

2 Y 3
3

Y 4
1 Y 4

2 Y 4
3

Y 5
1 Y 5

2 Y 5
3

 , we have



Y
∣∣
I={1,2,3} =

Y 1
1 Y 1

2 Y 1
3

Y 2
1 Y 2

2 Y 2
3

Y 3
1 Y 3

2 Y 3
3



Y
∣∣
I={1,4,5} =

Y 1
1 Y 1

2 Y 1
3

Y 4
1 Y 4

2 Y 4
3

Y 5
1 Y 5

2 Y 5
3


, (11)

and so on. Thus, Equation (10) says that, after taking the normalisation into account, f♦ is
calculated by summing the contribution of all terms of the reference point Ψ, this contribution
being the corresponding coefficient times the determinant of Y

∣∣
I
, FI = det

(
Y
∣∣
I

)
.

Now, Equation (7) is rewritten for the present case as the following system of linear equations:

K∑
r=1

n∑
s=1

Xpr
qs(η♦Y )rs = Cp

q
p = 1, . . . ,K
q = 1, . . . , n

, (12)

with
Cp

q =
∑
I

cI
(
GI − FIY

)p
q

=
(
ΠY⊥

)p
p̄

∑
I

cI
(
GI

)p̄
q
, and (13)

Xpr
qs =

∑
I

cI

{(
GI − FIY

)p
q

(
Y
)r
s
−
(
ΠY⊥

)p
p̄

(
H̃I

)p̄r
qs

}
=
(
ΠY⊥

)p
p̄

∑
I

cI

((
GI

)p̄
q

(
Y
)r
s
−
(
H̃I

)p̄r
qs

)
.

(14)
The quantities GI and H̃I are defined as:(

GI

)p
q

= det
(
Y

q← ep

) ∣∣
I

(15)(
HI

)pr
qs

= det
(
Y

q← ep
s← er

) ∣∣
I

;
(
H̃I

)pr
qs

=

{ (
HI

)pr
qs

if s 6= q

−FIδpr otherwise
. (16)

The notation A
q← b represents the matrix A with the q-th column replaced by b, whereas ep is the

p-th element of the canonical basis of RK . For example, given the matrix Y of Equation (11):

(
GI={1,2,3}

)3
3

= det

Y 1
1 Y 1

2 0
Y 2

1 Y 2
2 0

Y 3
1 Y 3

2 1

 = Y 1
1 Y

2
2 − Y 2

1 Y
1
2 ; (17)

(
GI={1,2,3}

)4
2

= det

Y 1
1 0 Y 1

3

Y 2
1 0 Y 2

3

Y 3
1 0 Y 3

3

 = 0 ; (18)

(
HI={1,4,5}

)15

12
= det

1 0 Y 1
3

0 0 Y 4
3

0 1 Y 5
3

 = −Y 4
3 . (19)

The above equations are valid for an orthonormal basis of Φ (note, for instance, the absence of
normalisation factors as we have for f , Equation (10)). Furthermore, the matrix η♦Y must be in
the space HY = {Y⊥K : K ∈ R(K−n)×n}, that is, its columns must be orthogonal to the columns
of Y . This is guaranteed by extending the matrices X and C (with the columns of Y and zeros,
respectively) to impose this orthogonality condition automatically when solving Equation (12).
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Although Equation (10) is simply obtained using the tools of exterior algebra, where the de-
terminant plays a central role, substitution of Equation (10) in Equation (7) leads to a lengthy
derivation. To see how the quantities GI and HI appear, note that:

∂det(Y
∣∣
I
)

∂Y p
q

(Y ) = tr

(
adj(Y

∣∣
I
)
∂(Y |I)

∂Y p
q

(Y
))

(20)

= tr


det(Y

1← δ1qep)
∣∣
I

. . . det(Y
1← δnqep)

∣∣
I

...
. . .

...

det(Y
n← δ1qep)

∣∣
I

. . . det(Y
n← δnqep)

∣∣
I

 (21)

=
(
GI

)p
q
, (22)

where adj(W ) represents the classical adjoint, or adjugate, of W . In Equation (20) the Jacobi
formula for the derivative of the determinant has been used, whereas Equation (21) is obtained
using the fact that the product between adj(W ) and a column vector b is the column vector with

det(W
p← b) in the p-th entry. The quantities HI appear similarly, from the directional derivative

of the gradient in the left-hand side of Equation (7).

5 Application to Quantum Chemistry

Back to our motivation, the electronic wave functions of a n-electron system belong to
∧n V.

However, the extremely large dimension of
∧n V to accurately represent the wave function makes

its calculation and storage impractical for most of the cases. Thus, a number of procedures exist
to truncate such expansion, keeping only the most important contributions to the actual wave
function. See [5] for a detailed description of the main methods to approximate the wave function.
One of the ways to do this is to use an element of Gr(n,V) ⊂ P

∧n V as an approximate wave
function: Φ = u1 ∧ u2 ∧ · · · ∧ un. From the chemical point of view, there is one electron associated
to the spin orbital u1, another associated to the spin orbital u2, and so on. This is called orbital
approximation and provides an interpretation of the wave function in terms of occupied orbitals
and electronic configuration, central to chemistry. However, for such approximation be reasonable,
Φ has to be optimised according to some criteria (that is, optimal orbitals ui must be used). In
one of the most important methods in computational chemistry, the Hartree-Fock method (see
Chapter 10 of [5]), Φ is optimised to minimise the energy of the wave function.

The Hartree-Fock method, however, very often fails to provide a qualitative description of the
exact wave function [5], because it might not be close enough to the Grassmannian. In these cases
more elaborate methods must be used, for instance as described in [6]. The main application of this
work is to characterise when and why this happens, by obtaining the point of the Grassmannian
closest to the exact wave function. Note that a metric in P

∧n V can be introduced, among
several ways, with D(Ψ,Ψ′) = arccos|〈Ψ,Ψ′〉|, where Ψ and Ψ′ are assumed normalised [2]. Thus,
the distance from the exact wave function to the Grassmannian can be obtained by finding the
maximum of the function f , Equation (9). Its knowledge and characterisation should help to
understand when the Hartree-Fock method is accurate enough for the description of the electronic
system. Aiming at this application, the equations presented in Section 4 have been implemented
using Python. This implementation considers specific cases for the matrix Y and reference point
Ψ, e.g. the decomposition of Y into alpha and beta spins. Test calculations have been carried out,
showing that the algorithm can be used for reasonably large systems [2]. Further calculations over
a broader set of molecules to test this method for our target application are in progress and are
the subject of current research.
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5.1 An example

The smallest values for n and dimV for which the Grassmannian is not a projective space is
Gr(2,V), with dimV = 4: V = span{u1, u2, u3, u4}. This is a model for studying the hydrogen
molecule, H2, that has two electrons. A common choice for this basis (see Section 5.2 of [5]) is
to use u1 and u2 as the bonding spatial orbital, but with opposite spins, and u3 and u4 as the
anti-bonding spatial orbital, again with opposite spins, forming an orthonormal basis. The second
exterior power of V is:∧2

V = span{u1 ∧ u2, u1 ∧ u3, u1 ∧ u4, u2 ∧ u3, u2 ∧ u4, u3 ∧ u4} , (23)

and an arbitrary element of this vector space is
∑

I cIΦI ∈
∧2 V, with cI ∈ R, Φij = ui ∧ uj , and

i < j. We will consider Ψ = c12 Φ12 + c34 Φ34 as the reference point. Note that, for Ψ /∈ Gr(2,V),
for c12c34 6= 0, which follows directly from the Plücker relation for this Grassmannian, see for
example Chapter 1, Section 5, of [4]. This element of

∧2 V represents the exact ground state wave
function of the hydrogen molecule, and it is commonly represented in Quantum Chemistry as:

c12 c34+ .
( )

u1 u2

u3 u4
( )

u1 u2

u3 u4

In this case, the symmetry and spin of the total system impose the remaining coefficients cij to be
zero.

Starting the procedure described in Section 4 at Φ = (a u1 − b u3) ∧ (a u2 + b u4) ∈ Gr(2,V),
the important quantities we need are:

Y =


a 0
0 a
−b 0
0 b

 ; GI={1,2} =


a 0
0 a
0 0
0 0

 ; GI={3,4} =


0 0
0 0
b 0
0 −b

 ; (24)

FI={1,2} = a2 ; FI={3,4} = −b2 ; (25)(
HI={1,2}

)pp
qq

= −a2;
(
HI={3,4}

)pp
qq

= b2 for all p, q (26)(
HI={1,2}

)12

12
=
(
HI={1,2}

)21

21
=
(
HI={3,4}

)34

12
=
(
HI={3,4}

)43

21
= 1 ; (27)(

HI={1,2}
)12

21
=
(
HI={1,2}

)21

12
=
(
HI={3,4}

)34

21
=
(
HI={3,4}

)43

12
= −1 ; (28)

and finally
(
HI

)pr
qs

= 0 for the remaining cases. With these elements, the application of the

equations of Section 4 is straightforward, and in Table 1 we give the convergence pattern of a
specific case. Note that the optimisation converges fast to the vector space spanned by {u1, u2},
that is indeed a critical point of the function f , with 〈u1 ∧ u2,Ψ〉 = c12. It will be the global
maximum of the function f whenever |c12| > |c34|, what is always the case for the wave function of
the hydrogen molecule, irrespective of the inter-nuclear distance between the two hydrogen atoms.
Two situations however arise: When |c12| � |c34| the Hartree-Fock wave function, that minimises
the energy at the Grassmannian, is also {u1, u2} and it is a good approximation to the exact wave
function (see Chapter 10 of [5]). This happens close to the equilibrium geometry of the molecule.
When the atoms become far from each other, however, |c12| ≈ |c34| and the Hartree-Fock wave
function does not represent the exact wave function qualitatively. It is not close to the maximum of
the function f , that is always the vector space spanned by {u1, u2}, indicating that the maximum
f can be used to assess the quality of the Hartree-Fock wave function.
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Table 1: Application of the algorithm for the Grassmannian Gr(2,V), dimV = 4, as outlined above, with

c12 = 0.8, c34 = −0.6, a = 0.9701425, and b = 0.24253563.

iteration Φ ∈ Gr(2,V) f(Φ) |C|2
0 (0.97014u1 − 0.24254u3) ∧ (0.97014u2 + 0.24254u4) 0.717647 0.465859
1 (0.99976u1 + 0.02169u3) ∧ (0.99976u2 − 0.02169u4) 0.799342 0.042927
2 (1.0u1 − 0.00001u3) ∧ (1.0u2 + 0.00001u4) 0.7999999997 2.6950 10−5

6 Concluding remarks

We present an optimisation procedure at the Grassmannian Gr(n,V), to find the critical points
of the inner product with an arbitrary element of the projective space of the exterior algebra
P
∧n V. This has potential applications in Quantum Chemistry, as it is an algorithm that explores

the intrinsic Riemannian geometry of the Grassmannian to perform an optimisation of the elec-
tronic wave function, and we think that this work can booster further applications of concepts of
differential geometry to the field of Quantum Chemistry.
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