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Resumo: We analyze the stabilization of the third order nonlinear Schrödinger equation in a
bounded interval under the effect of a localized damping mechanism. That is, we consider the
following equation:

iut + αuxx + iβuxxx + |u|2u + ia(x)u = 0.

Where u = u(x, t) is a complex valued function defined in (0, L) × (0,+∞) and α, β are real
constants.This equation models a pulse propagation in a long-distance and high-speed optical fiber
transmission system. Using multiplier techniques and a special uniform continuation theorem
we prove the exponential decay of the total energy associated with the above system.
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1 Introduction

We consider the third order nonlinear damped Schrödinger (NS) system in a bounded interval∣∣∣∣∣∣∣∣∣∣∣∣∣

iut + αuxx + iβuxxx + |u|2u + ia(x)u = 0 in (0, L)× (0,+∞)

u(0, t) = u(L, t) = 0 for all t ≥ 0

ux(L, t) = 0 for all t ≥ 0

u(x, 0) = u0 in (0, L).

(1.1)

Where u is a complex valued function, u0 belongs to L2(0, L), the constant α is a real non null
constant and β is a positive constant.
Here a = a(x) is a non-negative real valued function belonging to L∞(0, L) and moreover we will
assume that a(x) ≥ a0 > 0 a.e. in an open, non-empty subset ω of (0, L), where the damping is
acting effectively.
The above third order nonlinear Schrödinger equation was proposed by Kodama [3] to model
a pulse propagation in a long-distance and high-speed optical fiber transmission system. Ko-
dama [3] considered the following (perturbed) nonlinear Schrödinger equation with higher-order
terms (as the perturbation terms)

iut +
1
2
uxx + |u|2u = iε

(
β1uxxx + β2|u|2ux + β3u

2ux

)
− iΓu, (1.2)

where ε is a small real parameter (|ε| � 1) and β1, β2, β3 and Γ are real constants.
In [2], Chu used equation (1.2) with β2 = β3 = Γ = 0 as a model for the soliton propagation
in an optical fiber. He showed that the third order term can be used to reduce the mutual
interaction between solitons when the fiber is operated nonlinearly.
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The present paper is devoted to study the rate of the decay of the energy associated to the
system (1.1), as the time t tends to +∞
We consider the inner product in L2(0, L) defined by:

(f |g) = Re

∫ L

0
f(x)g(x) dx

and the inner product in H1
0 (0, L) by:

(f |g)1 = Re

∫ L

0
fx(x)gx(x) dx

The energy is defined by:

E(t) =
1
2

∫ L

0
|u(x, t)|2 dx =

1
2
‖u(t)‖2.

Using the boundary conditions in (1.1) we prove that

dE

dt
= −β

2
|ux(0, t)|2 −

∫ L

0
a(x)|u(x, t)|2 dx ∀t > 0.

Since β > 0 and by assumption on damping a, we observe that according to the above energy
dissipation law, the energy E(t) is a nonincreasing function of the time.
In section 2, for the sake of the completeness, we make a brief analysis of the linear case, that is,
the system (1.1) without the term |u|2u. We use the work of Silva-Vasconcellos [10] and some
multiplier techniques when we consider the additional damping term.
In section 3, we study the system (1.1). At first, we prove the existence and uniqueness of
solutions and then we answer the following questions:
Does the energy E(t) → 0 as t → +∞ ? Is it possible to find a rate of decay of the energy?
We show that the energy associated to problem (1.1) decays exponentially and this decay is
uniform.
Dispersive problems have been object of intensive research (see, for instance, the classical paper
of Benjamin-Bona-Mahoni [1], Menzala et al. [5], Rosier [7], and references therein). Global
stabilization of the generalized KdV system has been obtained by Rosier-Zhang [8]. Linares-
Pazoto [4] studied the stabilization of the generalized KdV system with critical exponents.
Vasconcellos-Silva [12] studied the existence, regularity of the solutions and stabilization for the
Kawahara system.

2 The Linear System

In this section we analyze the linear system associated with system (1.1).
Taking into account the work of Silva-Vasconcellos[10], we begin by analysing existence, unique-
ness, regularity of solutions and exponential decay of the energy associated to the following
system: ∣∣∣∣∣∣∣∣∣∣∣∣∣

iut + αuxx + iβuxxx + ia(x)u = 0 in (0, L)× (0,+∞)

u(0, t) = u(L, t) = 0 for all t ≥ 0

ux(L, t) = 0 for all t ≥ 0

u(x, 0) = u0 in (0, L).

(2.1)

Here u0 belongs to L2(0, L), α is a real non null constant and β is a positive constant, moreover
a = a(x) is a non-negative real valued function belonging to L∞(0, L) and a(x) ≥ a0 > 0 a.e. in
an open, non-empty subset ω of (0, L).
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Theorem 2.1. (Existence, uniqueness and regularity)
The problem (2.1) has a unique solution u belonging to C([0,+∞);L2(0, L))∩L2(0,+∞;H1

0 (0, L)).
Moreover,

i) ‖u‖C([0,+∞);L2(0,L)) ≤ C‖u0‖

ii) ux(0, .) belongs to L2(0,+∞) and ||ux(0, .)||L2(0,+∞) ≤ C||u0||

iii) For each T > 0, u belongs to L2(0, T ;H1
0 (0, L)) and there exists C1(L, T, β) > 0 such that:

‖u‖L2(0,T ;H1
0 (0,L)) ≤ C1‖u0‖.

and the energy dissipation law,

dE

dt
= −β

2
|ux(0, t)|2 −

∫ L

0
a(x)|u(x, t)|2 dx ≤ 0, ∀t > 0, (2.2)

holds.

We use semigroups theory to prove the existence and uniqueness and to show regularity of
solutions we consider the multipliers techniques.
The items i), ii), iii) and the dissipation law follow as in Silva-Vasconcellos[10], considering there
the parameter γ = 0.
In what concerns stabilization, the following result holds.

Theorem 2.2. (Stabilization for the linear case)
Assume that a ≥ a0 > 0 a.e. in an open non-empty subset ω of (0, L). Then, for any L > 0,
there exist c > 0 and µ > 0 such that

E(t) ≤ c||u0||2 e−µt (2.3)

for all t ≥ 0 and all solution of the system (2.1) with u0 ∈ L2(0, L).

To prove the above theorem we use multiplier techniques and the Holmgren’s Uniqueness The-
orem. This proof follows the same method developed in Menzala et al. [5] for the KdV linear
system and Vasconcellos-Silva [11] for the Kawahara linear system.

3 The System (1.1)

In this section we analyzed our main problem.
At first and again for sake of completeness we prove the existence and uniqueness of global
solution for the system (1.1)

Theorem 3.1. (Existence and uniqueness)
If u0 belongs to L2(0, L), then the problem (1.1) has a unique solution u belonging to
C([0,+∞);L2(0, L)) ∩ L2

loc(0,+∞;H1
0 (0, L)).

We can observe, using boundary conditions, that the total energy associated to system satisfies
the energy dissipation law:

dE

dt
= −β

2
|ux(0, t)|2 −

∫ L

0
a(x)|u(x, t)|2 dx ≤ 0, ∀t > 0, (3.1)

So, it is sufficient to prove local (in time) existence and uniqueness for the system (1.1). Global
existence will then follow from (3.1). We define a continuous mapping on a convenient Banach
space and we use a fixed point theorem.
The aim of this work is to show the locally uniform exponential decay of the energy associated
to the problem (1.1). We employ the method developed for the linear case, see the Theorem
2.2, however, we may not apply Holmgren’s principle since we have now a semi-linear problem.
So, we must consider an important result named Unique Continuation Principle (UCP) for the
system (1.1), which we state below.
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Theorem 3.2. (Unique Continuation Principle (UCP))
Let ω be an open, non-empty subset of (0, L).
If u ∈ L2(0, T ;H3(0, L)) ∩ L2(0, T ;H1

0 (0, L)) ∩ L∞(0, T ;L2(0, L)) solves∣∣∣∣∣∣∣∣∣∣∣∣∣

iut + αuxx + iβuxxx + λ|u|2u = 0 in (0, L)× (0,+∞)

u(0, t) = u(L, t) = 0 for all t ≥ 0

ux(L, t) = 0 for all t ≥ 0

u ≡ 0 in ω × (0, T )

(3.2)

with λ > 0 and T > 0, then necessarily u ≡ 0 in (0, L)× (0, T )·

The proof of the above theorem follows from the result due to Saut-Scheurer [9].
Now, we can enunciate our main theorem:

Theorem 3.3. The stabilization for system (1.1)
Assume the open subset ω of (0, L) is such that the (UCP) above holds. Let a = a(x) be a
non-negative function belonging to L∞(0, L) such that a(x) ≥ a0 > 0 a.e. in ω. Then, for all
R > 0, there exist c(R) = c > 0 and µ(R) = µ > 0 such that

E(t) ≤ c||u0||2e−µt (3.3)

for all t ≥ 0 and any solution of (1.1) with u0 ∈ L2(0, L) and ||u0|| ≤ R.

To prove the theorem 3.3 we use (UCP) and therefore we need to obtain a gain of regularity for
the solutions of the system (3.2), for this, we use a similar method to that found in Pazoto [6].
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