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Abstract. This work is concerned with mathematical programming problems with inequality
constraints in which the objective function is interval-valued. Necessary optimality conditions of
Karush-Kuhn-Tucker type are derived through a geometric approach and the use of the generalized
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1 Introduction

Considering optimization problems in which the objective function is intervalar-valued is an
alternative way to deal with inaccuracies in the data, interval optimization problems have been
studied by many researchers and many applications have been examined. See Inuiguchi et al. [1]
and Pal et al. [4] and references therein, for instance.

This work is devoted to present optimality conditions for constrained interval optimization
problems defined in Rn. Necessary optimality conditions of Karush-Kuhn-Tucker (KKT) type and
strict KKT type are developed. As far as we know, strict KKT type optimality conditions are a
novelty in the interval context. The KKT and strict KKT type necessary optimality conditions are
stated in terms of the generalized Hukuhara (gH) gradient of the interval objective function along
with the (classical) gradients of the active constraints. The gH-derivative concept for functions of
several variables adopted here was the one given in Stefanini and Arana-Jiménez [5]. This concept
is more adequate than others found in the literature, since it really extends the gH-derivative
originally defined in Stefanini and Bede [6] for functions on R.

Despite the development of the theory on interval optimization is relatively recent, a great
amount of research on this topic has been done so far. For example, optimality conditions for
interval optimization problems are presented in Osuna-Gómez et al. [2,3] and Stefanini and Arana-
Jiménez [5]. The work [5] brings KKT type optimality conditions for fuzzy optimization problems.
As it is well known, such conditions can be particularized for interval problems. By doing this
particularization, we see that the KKT type conditions given in [5] are the same as the ones given
here, but our approach is different, since we use some geometric ideas. Moreover, we also obtain
strict KKT type conditions, which is not done in [5]. To obtain the KKT necessary optimality
conditions we use the positive linear independence constraint qualification, which is more general
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than the linear independence constraint qualification assumed in [5]. The characterization of
strict KKT solutions is done down the positive linear independence regularity condition. In [2], a
different concept of gH-derivative was used, which is not a natural generalization of the case n = 1.
Necessary and sufficient conditions are given, but for the unconstrained case. The multiobjective
constrained case is considered in [3] for one-dimensional problems.

The paper is organized in the following way. In the next section, we set the notation and give
some important definitions. In Section 3, we state the interval programming problem this work
is concerned with and obtain the necessary optimality conditions. Section 4 is devoted to some
concluding words. Finally, we have the references cited throughout the text.

2 Preliminaries

The interval space, denoted by KC(R) (or simply KC), is the set of all convex compact intervals
in R, i.e., KC(R) = {[a, a] : a, a ∈ R and a ≤ a}. We consider the interval space endowed by the
Pompeiu-Hausdorff metric, given by dH(A,B) = max{|a−b|, |a−b|} for all A = [a, a], B = [b, b] ∈
KC(R). It is well known that (KC(R), dH) is a complete and separable metric space.

Given A = [a, a], B = [b, b] ∈ KC and λ ∈ R, the interval arithmetic operations herein used are
defined as follows:

A+B = [a+ b, a+ b], and λ ·A =

{
[λa, λa], ifλ ≥ 0,

[λa, λa], ifλ < 0.

The gH-difference of two intervals A,B ∈ KC is defined by

A	gH B = C ⇔

{
A = B + C, or

B = A+ (−1)C.

The cartesian product of n-factors KC is denoted by KnC , that is, KnC = KC × · · · × KC . Let
A = (A1, . . . , An), B = (B1, . . . , Bn) ∈ KnC and λ ∈ R. The sum and the product by scalar in KnC
are defined as follows:

A⊕B = (A1, . . . , An)⊕ (B1, . . . , Bn) = (A1 +B1, . . . , An +Bn),

λ�A = λ� (A1, . . . , An) = (λ ·A1, . . . , λ ·An).

By regarding a real number as a degenerated interval, given v = (v1, . . . , vn) ∈ Rn, we write

A⊕ v = ([a1, a1] + [v1, v1], . . . , [an, an] + [vn, vn]) ,

where Ai =
[
ai, ai

]
∈ KC , i = 1, . . . , n. By v ∈ A we mean vi ∈ Ai, i = 1, . . . , n. By the product

topology in Rn, we have int(A) = (int(A1), . . . , int(An)), where int([ai, ai]) = (ai, ai), i = 1, . . . , n.
As mentioned in the introduction, we make use of the gH-differentiability concept, which was

recently introduced in Stefanini and Arana-Jiménez [5]. We refer the reader to [5] for the definitions
of the gH-derivative, gH-gradient, the gH-directional derivative and the gH-partial derivatives and
their properties. Given F : S ⊆ Rn → KC , x0 ∈ S and d ∈ Rn, these are denoted, respectively, as
DgHF (x0), ∇gHF (x0), F ′gH(x0; d) and

∂gHF
∂xi

(x0), i = 1, . . . , n.
Given f : Rn → R and x0 ∈ Rn, the following notation will be used next.

(∇f)− (x0) =

(
∂f

∂x−1
(x0), . . . ,

∂f

∂x−n
(x0)

)
, (∇f)+ (x0) =

(
∂f

∂x+1
(x0), . . . ,

∂f

∂x+n
(x0)

)
.

The usual inner product defined on Rn is denoted by 〈u, v〉, for all u, v ∈ Rn. Given d, d ∈ R,
we denote [d ∨ d] := [min{d, d},max{d, d}].

By making use of Proposition 11 and Theorem 5 in [5], we obtain the theorem below.
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Theorem 2.1. Let F : S → KC such that F (x) =
[
f(x), f(x)

]
, x ∈ S, where S ⊆ Rn is open. If

F is gH-differentiable at x0 ∈ S, then for all d ∈ Rn, one of the following cases holds:

(i)
(
∇f
)

(x0) and
(
∇f
)

(x0) both exist and F ′gH(x0; d) =
[〈(
∇f
)

(x0), d
〉
∨
〈(
∇f
)

(x0), d
〉]

. Par-

ticularly,
∂gHF
∂xi

(x0) =
[
∂f

∂xi
(x0) ∨ ∂f

∂xi
(x0)

]
, i = 1, . . . , n.

(ii)
(
∇f
)
− (x0),

(
∇f
)
− (x0),

(
∇f
)
+

(x0) and
(
∇f
)
+

(x0) exist, and satisfy〈(
∇f
)
− (x0), d

〉
=
〈(
∇f
)
+

(x0), d
〉
,
〈(
∇f
)
− (x0), d

〉
=
〈
(∇f)+(x0), d

〉
,

F ′gH(x0; d) =
[〈(
∇f
)
− (x0), d

〉
∨
〈(
∇f
)
− (x0), d

〉]
=
[〈(
∇f
)
+

(x0), d
〉
∨
〈(
∇f
)
+

(x0), d
〉]
.

Particularly,
∂gHF
∂xi

(x0) =
[
∂f

∂x−
i

(x0) ∨ ∂f

∂x−
i

(x0)
]

=
[
∂f

∂x+
i

(x0) ∨ ∂f

∂x+
i

(x0)
]
, i = 1, . . . , n.

Let A = [a, a] and B = [b, b] ∈ KC . Herein, the following partial order relations are used:

1. A ≤LU B if and only if either a < b and a ≤ b or a ≤ b and a < b.

2. A <LU B if and only if a < b and a < b.

Proposition 2.1 (Stefanini and Arana-Jiménez [5]). Let A = [a, a], B = [b, b], C = [c, c] ∈ KC ,
and �LU∈ {≤LU , <LU}. Then, A�LU B if and only if A	gH B �LU [0, 0].

3 Necessary Optimality Conditions

The interval programming problem considered in this work is stated as

minimize F (x) = [f(x), f(x)]
subject to gj(x) ≤ 0, j = 1, . . . ,m,

x ∈ S ⊆ Rn,
(IP)

where f, f : S → R, f(x) ≤ f(x), x ∈ S, gj : S → R, j = 1, . . . ,m, and S is open.
The set of all feasible points is denoted by X , that is,

X = {x ∈ S : gj(x) ≤ 0, j = 1, . . . , n}.

For each feasible point x ∈ X , the set of indices of active constraints at x is defined by

I(x) = {j ∈ {1, . . . , n} : gj(x) = 0}.

Given ε > 0, Nε(x
∗) denotes the ε-neighborhood of x∗ ∈ Rn, that is, Nε(x

∗) = {x ∈ Rn :
|x− x∗| < ε}. Let x∗ ∈ X . Then,

1. x∗ is said to be a local LU-solution of (IP) if there exists ε > 0 such that there does not exist
x ∈ X ∩Nε(x∗) with F (x) ≤LU F (x∗).

2. x∗ is said to be a local weak LU-solution of (IP) if there exists ε > 0 such that there does
not exist x ∈ X ∩Nε(x∗) with F (x) <LU F (x∗).

It is straightforward to verify that every LU-solution is also a weak LU-solution. So, though
all results will be stated for weak LU-solutions, they can be applied to LU-solutions.

We assume throughout this paper that F is gH-differentiable in S and that gj , j = 1, . . . ,m,
are continuously differentiable in S.

The result below is a geometrical characterization of weak LU-solutions.
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Proposition 3.1. If x∗ ∈ X is a local weak LU-solution of (IP), then{
F ′gH(x∗; d) <LU [0, 0],

〈∇gj(x∗), d〉 < 0, j ∈ I(x∗),
(1)

does not have any solution d ∈ Rn.

Proof. We proceed by contradiction, by assuming that system (1) has a solution, say d̂ ∈ Rn. From

lim
α→0+

gj(x
∗ + αd̂)− gj(x∗)

α
=
〈
∇gj(x∗), d̂

〉
< 0, j ∈ I(x∗),

it follows that gj(x
∗ + αd̂) = gj(x

∗ + αd̂)− gj(x∗) < 0, j ∈ I(x∗), for all α > 0 small enough. For

j not in I(x∗), we have gj(x
∗) < 0, so that, by continuity, gj(x

∗ + αd̂) < 0, for all α > 0 small
enough. Then, there exists α̂ > 0 such that

gj(x
∗ + αd̂) < 0, j = 1, . . . ,m, α ∈ (0, α̂). (2)

Moreover, d̂ also satisfies

F ′gH(x∗; d̂) = lim
α→0+

1

α
·
(
F (x∗ + αd̂)	gH F (x∗)

)
<LU [0, 0].

Let F ′gH(x∗; d̂) = L = [l, l] ∈ KC . Let 0 < ε < −l. By definition of limit, there exists α̃ > 0 such
that

dH

(
1

α
·
(
F (x∗ + αd̂)	gH F (x∗)

)
, L

)
< ε, α ∈ (0, α̃).

By setting 1
α ·
(
F (x∗ + αd̂)	gH F (x∗)

)
:= Kα =

[
kα, kα

]
, it follows that max{|kα− l|, |kα− l|} =

dH(Kα, L) < ε, from where kα < l+ ε < l− l < 0 and kα < l+ ε < l− l = 0. Thus, Kα <LU [0, 0]
for α ∈ (0, α̃) and, from Proposition 2.1, we have

F (x∗ + αd̂) <LU F (x∗), α ∈ (0, α̃). (3)

Taking δ := min{α̂, α̃}, it follows from (2) and (3) that x∗ + αd̂ ∈ X along with F (x∗ + αd̂) <LU
F (x∗) for all α ∈ (0, δ). This contradicts the local optimality of x∗.

Let x∗ ∈ Rn. In what follows, we denote

∇]f(x∗) =

{
∇f(x∗), if f is differentiable at x∗,
(∇f)−(x∗), otherwise,

∇]f(x∗) =

{
∇f(x∗), if f is differentiable at x∗,

(∇f)−(x∗), otherwise.

The result stated next is a direct consequence of Theorem 2.1 and Proposition 3.1.

Proposition 3.2. If x∗ ∈ X is a local weak LU-solution of (IP), then
〈
∇]f(x∗), d

〉
< 0,〈

∇]f(x∗), d
〉
< 0,

〈∇gj(x∗), d〉 < 0, j ∈ I(x∗),

does not have any solution d ∈ Rn.
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The following necessary optimality conditions can be seen as of Fritz John type. Below, 0Rn

denotes the null vector in Rn.

Theorem 3.1. Let x∗ ∈ X be a local weak LU-solution of (IP). Then, there exist λ = (λ1, λ2) ∈ R2

and µ = (µ1, . . . , µm) ∈ Rm, not all zero, such that

λ1∇]f(x∗) + λ2∇]f(x∗) +

m∑
j=1

µj∇gj(x∗) = 0Rn , (4)

µjgj(x
∗) = 0, λ1, λ2, µj ≥ 0, j = 1, . . . ,m. (5)

Proof. The result follows directly from Proposition 3.2 after applying Gordan’s Transposition The-
orem and defining µj = 0 for j not in I(x∗).

We, now, turn to the KKT type optimality conditions. It is well known that regularity condi-
tions are required to obtain KKT type optimality conditions. Herein, we use the positive linear
independence constraint qualification.

Definition 3.1. The constrains of (IP) are said to satisfy the positive linear independence con-
straint qualification (PLICQ) at a feasible point x∗ ∈ X if there do not exist βj ≥ 0, j ∈ I(x∗),
not all zero, such that ∑

j∈I(x∗)

βj∇gj(x∗) = 0Rn .

Theorem 3.2. Let x∗ ∈ X be a weak LU-solution of (IP). Assume that the constraints of (IP)
satisfy PLICQ at x∗. Then there exists µ = (µ1, . . . , µm) ∈ Rm such that

0Rn ∈ ∇gHF (x∗)⊕
m∑
j=1

µj∇gj(x∗), (6)

µjgj(x
∗) = 0, µj ≥ 0, j = 1, . . . ,m. (7)

Proof. It follows from Theorem 3.1 and the assumption that PLICQ is satisfied, that there exist
multipliers λ̃1, λ̃2, µ̃j , j = 1, . . . , n, with (λ̃1, λ̃2) 6= (0, 0), such that the conditions (4)-(5) hold.
Thus, normalizing, if necessary, we obtain new multipliers λ1, λ2, µj , j = 1, . . . , n, satisfying (4)-(5)
with λ1 + λ2 = 1. Let us denote

∂f

∂x]i
(x∗) =


∂f

∂xi
(x∗), if f is differentiable at x∗,

∂f

∂x−
i

(x∗), otherwise,

∂f

∂x]i
(x∗) =


∂f
∂xi

(x∗), if f is differentiable at x∗,

∂f

∂x−
i

(x∗), otherwise.

It follows from (4) that

λ1
∂f

∂x]i
(x∗) + λ2

∂f

∂x]i
(x∗) +

m∑
j=1

µj
∂gj
∂xi

(x∗) = 0, i = 1, . . . , n.

Provided λ1, λ2 ≥ 0 and λ1 + λ2 = 1, we see that

−
m∑
j=1

µj
∂gj
∂xi

(x∗) ∈

[
∂f

∂x]i
(x∗) ∨ ∂f

∂x]i
(x∗)

]
, i = 1, . . . , n,
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from where, by making use of Theorem 2.1, we obtain

0 ∈ ∂gHF

∂xi
(x∗) +

m∑
j=1

µj
∂gj
∂xi

(x∗), i = 1, . . . , n.

The result is, now, easily obtained.

Next, we consider the positive linear independence regularity condition. This regularity condi-
tion was given in the literature to deal with vector optimization problems. Here, it is adapted to
handle the class of interval programming problems. By employing such a condition, we derive a
more accurate KKT type theorem, the strict KKT type conditions.

Definition 3.2. The positive linear independence regularity condition (PLIRC) is said to be sat-
isfied at x∗ ∈ X if

(i) there do not exist βj ≥ 0, j ∈ I(x∗), not all zero, such that∑
j∈I(x∗)

βj∇gj(x∗) = 0Rn ;

(ii) there does not exist λ1 > 0 and µj ≥ 0, j ∈ I(x∗), such that

λ1∇]f(x∗) +
∑

j∈I(x∗)

µj∇gj(x∗) = 0Rn

or there does not exist λ2 > 0 and µj ≥ 0, j ∈ I(x∗), such that

λ2∇]f(x∗) +
∑

j∈I(x∗)

µj∇gj(x∗) = 0Rn .

Theorem 3.3. Let x∗ ∈ X be a weak LU-solution of (IP). Assume that PLIRC holds at x∗ and

that int

(
∂gHF

∂xi
(x∗)

)
6= ∅, i = 1, . . . , n. Then there exists µ = (µ1, . . . , µm) ∈ Rm such that

0Rn ∈ int

∇gHF (x∗)⊕
m∑
j=1

µj∇gj(x∗)

 , (8)

µjgj(x
∗) = 0, µj ≥ 0, j = 1, . . . , n. (9)

Proof. The proof is very similar to that of Theorem 3.2, but here, my making use of PLIRC, we
can ensure that the multipliers λ1 and λ2 are both positive along with λ1 + λ2 = 1. Therefore,

−
m∑
j=1

µj
∂gj
∂xi

(x∗) ∈ int

([
∂f

∂x]i
(x∗) ∨ ∂f

∂x]i
(x∗)

])
, i = 1, . . . , n,

and the result follows.

Example 3.1. The interval optimization problem is given as

minimize F (x1, x2) = [x1 ∨ 2x1]
subject to g1(x1, x2) = x21 − 2x1 − x2 ≤ 0,

g2(x1, x2) = x21 − 2x1 + x2 ≤ 0,
g3(x2, x2) = −x1 + x22 ≤ 0,
(x1, x2) ∈ S = R2.
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It is easy to see that we have x1 ≥ 0 for all feasible point (x1, x2). Therefore, x∗ = (0, 0) is clearly
a LU-solution of the optimization problem. Let us note that x∗ = (0, 0) is a switching point of F
in S = R2. Moreover, F is gH-differentiable at x∗ while it is not H-differentiable at x∗. For this
optimization problem we have I(x∗) = {1, 2, 3}. Then, the gradients of the active constraints are
not linearly independent at x∗. But it is easily verifiable they are positively linearly independent,
that is, PLICQ is satisfied at x∗. It follows from Theorem 3.2 that x∗ is a KKT-solution of the
problem. In fact, (6)-(7) hold, for instance, with µ1 = µ2 = 1/4 and µ3 = 1/2.

4 Conclusion

It was obtained first-order necessary optimality conditions of KKT and strict KKT type for
mathematical programming problems in which the objective function is interval-valued. The char-
acterization of local optimal solutions was made through a geometric approach, resulting in an
algebraic condition after applying the Gordan’s Theorem of the alternative. The KKT conditions
were established under classical constraint qualifications from the literature. It was used the gener-
alized Hukuhara derivative concept, which is, to the best of our knowledge, one of the most general
ones for interval-valued maps.
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[3] Osuna-Gómez, R., Hernández-Jiménez, B., Chalco-Cano, Y. and Ruiz-Garzón, G. New effi-
ciency conditions for multiobjective interval-valued programming problems, Inform. Sciences,
420:235–248, 2017.

[4] Pal, B. B., Kumar, M. and Sen, S. A priority-based goal programming method for solving
academic personnel planning problems with interval-valued resource goals in university man-
agement system, Int. J. Appl. Manag. Sci., 4(3):284–312, 2012.
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