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Abstract. In this paper we study stable bi-maps f = (f1, f2) : M → R × R2 from a global
viewpoint, where M is a smooth closed orientable surface. We associate a bi-graph to f , so-called
RM-graph and study their properties. In this work we are looking for realization conditions for
RM-graphs associated to stable bi-maps.
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1 Introduction

In this work, we use graph theory to study stable maps defined on a smooth closed orientable
surface M ⊂ R3. Also, we will consider two types of stable maps: f1 : M → R and f2 : M → R2.
Stable maps have been investigated by several authors and have many interesting applications (see
[2,3,5,6,7,8,10,11,13], for instance).

First of all, let f1 : M → R be a stable map. For this type of map, it is known that the Reeb
graph is a global topological invariant associated to f1 (cf. [4], [12]). The Reeb graph describes the
topology of the surface M . Moreover, the Reeb graphs have many applications in Computational
Geometry, Computer Graphics, Engineering, Applied Mathematics, etc. We will call the Reeb
graph associated to f1 : M → R by R-graph.

Let now f2 : M → R2 be a stable map. For this type of map, by Whitney’s Theorem (cf.
[13]), the singular set of f2 (denoted by Σf2 ⊂ M) consists of curves of double points, possibly
containing isolated cusp points. The singular and regular components in the surface M codify
relevant information about the stable map f2. In fact, in [5] graphs with weights on the vertices
were introduced as a global topological invariant for stable maps of type f2 : M → R2. We will
call the weighted graph associated to f2 : M → R2 by M-graph.

In this work we consider a pair of stable maps (called here stable bi-map) f = (f1, f2) : M →
R×R2, then we associated to it a bi-graph (G1,G2), where G1 is a R-graph and G2 is aM-graph.
Since the R-graph contributes to determine the position of the maximum and minimum points
(local and global) of f1, and the M-graph contributes to determine the position of the regular
regions and singular curves of f2 in M , we propose the study of some natural questions: Any
bi-graph (G1,G2) can be associated to a stable bi-map f = (f1, f2) : M → R × R2, where M is a
smooth closed orientable surface? In other words, every pair of graphs (G1,G2) is a RM-graph?
Otherwise, what conditions should we impose on a pair of graphs (G1,G2) for it to be aRM-graph?
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2 Stable bi-maps

We begin this section by recall some basic facts.

Definition 2.1. Two smooth maps f, g : M → N between two smooth closed orientable manifolds
M and N in Rn are said to be A-equivalent if there are orientation preserving diffeomorphisms,
l : M →M and k : N → N , such that k ◦ f = g ◦ l.

Definition 2.2. A smooth map f is said to be stable if all maps sufficiently closed to f (in the
Whitney C∞-topology) are A-equivalent to f .

Definition 2.3. We say that the pair of smooth maps f = (f1, f2) : M → R × R2 is a stable
bi-map if each fi, i = 1, 2, is a stable map.

Of course that the stability of the pair f = (f1, f2) : M → R× R2, depends on the stability of
each fi, i = 1, 2. Remember that:

a) The map f1 : M → R is stable if f1 is Morse with distinct critical values. That is, if every
critical point of f1 is non-degenerated and each level curve of f1 has up to one critical point.

b) The map f2 : M → R2 is stable if its singular points are only folds and isolated cups.
Remind that a point p ∈ M is a regular point of f2 if the map f2 is a local diffeomorphism
around p. Otherwise, the point p is said to be a singular point. According to Whitney’s
Theorem (cf. [13]), the singularities of any stable map f2 : M −→ R2 are (locally) of fold
type (x, y) 7→ (x, y2) and cusp type (x, y) 7→ (x3 + yx, y).

The set of all singular points of f2, denoted by Σf2, is called singular set of f2. The singular
set of f2 consists of (finitely many) disjoint embedded closed curves in M . The image of singular
the set, f2(Σf2), is called the apparent contour of f2. The apparent contour of f2 is a finite
number of immersed closed plane curves with finite number of cups and finite number of transverse
intersections and self-intersections (disjoint from the set of cups). The regular set of f2, given by
M \ Σf2, consists in the set of all regular points of f2. Since M is a smooth closed orientable
surface, the singular set Σf2 is a finite collection of closed regular simple curves on M made of fold
points with possible isolated cusp points that divides M in a set of regular regions.

Figura 1: Example of stable bi-maps from sphere.

In this work we are interested in to study stable bi-maps f = (f1, f2) : M → R×R2 where each
stable map fi : M → Ri, i = 1, 2, can be decomposed (locally) as fi = πi ◦ j, where j : M → R3

is an embedding, π1 : j(M) → R and π2 : j(M) → R2 are the canonical projections, given by
π1(x, y, z) = z and π2(x, y, z) = (x, y), respectively.

The Figure 2 illustrates two different stable bi-maps f = (f1, f2) and g = (g1, g2) from sphere
S2. The j′is, i = 1, 2 indicate two different embedding of M in R3 and πi are the canonical
projections previously cited, i = 1, 2.
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2.1 RM-graphs associated to bi-stable maps

Let j : M → R3 be an embedding such that the mappings fi = πi ◦ j are stable, where πi are
the canonical projections previously cited, i = 1, 2 and M is a smooth closed orientable surface.
Then we can consider the stable bi-map f = (f1, f2) : M → R× R2.

Definition 2.4. Given a stable map f1 : M → R we consider the following equivalence relation
on M : x ∼ y ⇔ f1(x) = f1(y) and x and y are in the same connected component of f−11 (f1(x)).
The graph given by M/ ∼ is said to be the Reeb graph (or R-graph) associated to f1 : M → R
(cf. [1], [2]).

Definition 2.5. Given a stable map f2 : M → R2, we define the Mendes graph (or M-graph)
associated to f2 (cf. [5], [7]), in the following way:

1. The edges and vertices of this weighted graph correspond to the singular curves and the
connected components of the regular set, respectively.

2. An edge is incident to a vertex if and only if the corresponding singular curve to the edge lies
in the boundary of the regular region corresponding to the vertex.

3. The weight of a vertex is defined as the genus of the corresponding region.

Since f1 is stable we have associated to f1 its R-graph. Analogously, since f2 is stable, we have
the M-graph associated to f2. Using these two graphs we define a bi-graph associated to a stable
bi-map f = (f1, f2) as follows:

Definition 2.6. If G1 is the R-graph associated to a stable map f1 : M → R and G2 is the M-
graph associated to a stable map f2 : M → R2, then we say that the pair (G1,G2) is the RM-graph
associated to the stable bi-map f = (f1, f2) : M → R× R2.

The RM-graph will be represented by a bi-graph, as illustrated in the next picture. In each
RM-graph the left graph corresponds to the R-graph while the right graph corresponds to theM-
graph, respectively. The Figure 2 shows two stable bi-maps from sphere S2 and their respective
RM-graphs. In this picture, notice that the respective apparent contour sets of f2 and g2 are
the same. This fact suggests that only one of these graphs separately is not able to detect all
topological information of M .

Figura 2: Example of RM-graphs associated to f = (f1, f2) and g = (g1, g2).

3 Construction of stable bi-maps

In this work we are considering stable bi-maps of type f = (f1, f2) : M → R × R2 which can
be decomposed (locally) as fi = j ◦ πi, i = 1, 2, where j is an embedding from M in R3 and π1, π2
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are the canonical projections from j(M) to R and R2, respectively. Replacing the embedding j by
another embedding from M in R3, we can obtain new stable bi-maps. This procedure can be done
by taking small perturbations of the embedding j, so that they may change or not the images of
the projections π1 and π2. The new stable bi-maps obtained in this procedure have associated new
RM-graphs. Then, it is natural to ask if these changes modify the new RM-graphs or not.

3.1 Elementary Morse transitions

A Morse transition corresponds to an isotopy from a given stable map to another in a different
path component of E∞(M,R) (cf. [9]). Thus, a Morse transition allows to transform a stable map
f1 : M → R in another f̃1 : M → R in such a way that their respective R-graphs have a different
number of vertices or the same number of vertices with non-compatible labels. A Morse transition
T is called elementary if the isotopy T transforms f1 in f̃1 through one of the following ways:

[C ] The isotopy T creates a new edge in R-graph of f1. That is, if T (0) = f1 and its R-graph
has s saddles and m max/min points then T (1) = f̃1 and the R-graph of f̃1 has s+ 1 saddles
and m + 1 max/min points, with the new saddle and max/min point being connected by a
new edge.

[−C ] It is the inverse transition of C. That is, when the isotopy collapses an edge of R-graph of
f1, with the vertices that were removed being previously connected by an edge. In this case,
the R-graph of f̃1 has s− 1 saddles and m− 1 max/min points.

Figura 3: Elementary Morse transitions.

The Figure 3 indicates examples of elementary Morse transitions. Remember that in a RM-
graph picture, the left graph corresponds to the R-graph and the right graph is the M-graph.
Since elementary Morse transitions do not generate any new critical curve related to projection
π2, the M-graph has no change after C or −C transitions. In other words, elementary Morse
transitions change the RM-graph associated to original stable bi-map (j ◦π1, j ◦π2) changing only
its R-graph. Given a R-graph G1, we say that a C transition is a 1-extension over the graph G1.

Proposição 3.1. All pair of trees (G1(V 1, V 1 − 1),G2(2, 1)) is a RM-graph of some stable bi-map
f = (f1, f2) : S2 → R× R2, where G1(V 1, V 1 − 1) is a 1-trivalent tree.

Proof. Since G1(V 1, V 1 − 1) is a 1-trivalent tree, then V 1 is even and V 1−2
2 is a integer number.

Let g = (g1, g2) : S2 → R×R2 be the standard stable bi-map, given by gi = πi◦j, where j : S2 → R3

is an inclusion. Let (G1(2, 1),G2(2, 1)) be the RM-graph associated to g. After a sequence of V 1−2
2

1-extensions over the RM-graph of g without changing the singular set of g2, we obtain a new
stable bi-map f = (f1, f2) : S2 → R × R2 which realizes the bi-graph (G1(V 1, V 1 − 1),G2(2, 1)).
In fact, each 1-extension increases two edges and two vertices in the R-graph and do not change
the M-graph.
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3.2 Lips, beaks and swallowtail transitions

In this subsection we will consider transitions that change only the M-graph in a RM-graph
associated to a stable bi-map f = (f1, f2) : M → R × R2. They are the same transitions that
change the regular and singular sets of f2, namely the lips, denoted by L; beaks transitions, denoted
by B and swallowtail, denoted by S.

We denote by −B, −L and −S, respectively, the inverse transitions of B, L and S.

Figura 4: Lips and beaks transitions.

These transitions also change the number of cusps by ±2 and they are sufficient to show that
any tree of zero weight can be realized as a graph of a stable map from S2 to R2 (see Theorem
2 in [5]). Let f2 : M → R2 be a stable map and G2(V 2, E2) its associated M-graph. Then, the
lips transition (indicated by L) increases by 1 the number of regions in M (i.e., vertices in V 2)
and the number of singular curves in M (i.e., edges in E2). The swallowtail transition changes the
number of cusps but it does not change V 2 and E2. The beaks transition (indicated by B) can be
classified in four different cases:

B+
v : beaks transition increases by 1 the number of regular regions, i.e., it adds 1 vertex and 1

edge on the M-graph;

B−v : beaks transition decreases by 1 the number of regular regions, therefore it removes 1 vertex
and 1 edge on the M-graph;

B+
w : beaks transition increases by 1 the weight, maintains the number of regular regions (vertices)

but decreases by 1 the number of edges;

B−w : beaks transition decreases by 1 the weight, maintains the number of regular regions (verti-
ces) but increases by 1 the number of edges.

The four types of beaks transition are illustrated (locally) in Figure 5, where in the picture
X, X1, Y, Z, Z1 and Z2 denote (locally) the regular regions where the transitions hold and the
numbers 1 and 2 represent the number of singular curves:

Definition 3.1. Given a M-graph G2, we say that a composition of a lips transition with a beaks
transition (in this order) is a 2-extension over a M-graph if: (i) a lips transition L creates a
singular curve α in M with 2 cusps and 1 regular region; (ii) a beaks transition −B−v eliminates
the e cusps, dividing α into two new singular curves.

Lips and beaks transitions can modify the singular set of a stable map from M to the plane,
and do not change the singular set of the height function.

We call line graph, and denoted it by L2(k), a graph with k vertices with degree 2 and k − 1
edges. Applying 2-extensions we can show that all line graph L2(k) is a M-graph of some stable
map f2 : S2 → R2.

Lema 3.2. All pair of trees (G1(2, 1),G2(V 2, V 2 − 1)) is a RM-graph of some stable bi-map
f = (f1, f2) : S2 → R× R2.
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Figura 5: Decomposition of beaks transition.

Proof. Let g = (g1, g2) : S2 → R×R2 be the pair of canonical maps (given by height function),
such that the RM-graph associated to g is (G1(2, 1),G2(2, 1)), where each gi is composed by an
immersion j from S2 to R3 with canonical projections πi, i = 1, 2. Since G2(V 2, V 2 − 1) is a tree,
let L2(k+ 1) be the biggest line subgraph of G2(V 2, V 2−1) which connects two peripheral vertices
of G2(V 2, V 2 − 1), where k + 1 ≤ V 2. Then, the pair (G1(2, 1),L2(k + 1) can be realized as the
following:

i) If k is odd, k− 1 is even. Passing through a sequence of k−1
2 2-extensions (without changing

the singular set of g1), we obtain a stable bi-map h = (h1, h2) : S2 → R × R2 which realizes
the bi-graph (G1(2, 1),L2(k + 1)), because each 2-extension increases two edges and two vertices
in the M-graph and does not change the R-graph. After this, we can obtain a stable bi-map
f = (f1, f2) : S2 → R×R2, as required, realizing the RM-graph (G1(2, 1),G2(V 2, V 2 − 1)), taking
V 2 − k lips transitions over h = (h1, h2), in convenient regions.

ii) If k is even, we can first obtain a stable bi-map h = (h1, h2) which realizes the bi-graph
(G1(2, 1),L2(k + 1)) as done in item i). Then, we can obtain a stable bi-map f = (f1, f2) : S2 →
R × R2, as required, realizing the RM-graph (G1(2, 1),G2(V 2, V 2 − 1)), taking V 2 − k + 1 lips
transitions over h = (h1, h2), in convenient regions.

Theorem 3.3. If G1 is a 1-trivalent tree and G2 is a tree with W = 0 then the bi-graph (G1,G2)
is a RM-graph of some stable bi-map f = (f1, f2) : S2 → R× R2.

Proof. Let G1(V 1, V 1 − 1) be a 1-trivalent tree and G2(V 2, V 2 − 1) be a tree with W = 0.
Let L2(k + 1) be the biggest line subgraph of G2(V 2, V 2 − 1). Then by Lemma 3.2, the bi-graph
(G1(2, 1),L2(k+ 1)) can be realized by some stable bi-map g = (g1, g2) : S2 → R×R2. Since V 1 is
even and each 1-extension increases 2 vertices and 1 edge to the R-graph, then passing through a

sequence of V 1−2
2 1-extension over g = (g1, g2) we obtain a stable bi-map f = (f1, f2) : S2 → R×R2

which realizes the bi-graph (G1(V 1, V 1 − 1),G2(V 2, V 2 − 1)), as required.

Corollary 3.4. A bi-graph (G1,G2) is a RM-graph for a stable bi-map f = (f1, f2) : S2 → R×R2

if and only if G1 is a tree 1-trivalent and G2 is a tree with W = 0.

4 Conclusion and Future Work

In this paper we associate a bi-graph, so-called RM-graphs, to stable bi-maps f = (f1, f2) :
M → R × R2 from a global viewpoint, where M is a smooth closed orientable surface. Since the
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RM-graph captures more information about the topological structure of the surface M than other
classic graphs in literature we study the initial properties of the RM-graph looking for information
that would not be possible to be read using only one of the graphs separately. As a consequence we
present a realization result for a special type of pairs of RM-graphs associated to stable bi-maps
(Corollary 3.4). For future work we intend to study a more general realization theorem.
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