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Abstract. This work describes how we derived symbolic expressions for the Taylor coefficients of the
Lagrangian auto-covariance function for a two-dimensional, mean-zero, homogeneous, steady, and
incompressible random velocity field which is written as a sum of many Fourier modes. Additionally,
we wrote code to calculate these coefficients exactly and produce executable code which quickly
calculates the first terms of the Taylor expansion of the Lagrangian auto-covariance function.
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1 Introduction

The passive tracer transport problem is an important topic from the statistical fluid mechanics
field. It consists of determining the probability law of the position Xt, t ≥ 0 of one single particle
at time t ≥ 0 which is moved by a random velocity field U. For references, see [2, 6, 9].

Let U = {U (x, t) ,x ∈ R2, t ≥ 0} be a random velocity field taking values in R2 and let Xt be
the particle position at time t, for t ≥ 0. So {Xt, t ≥ 0} is the solution of the differential equation

dXt

dt
= U(Xt, t), t > 0; X0 = 0. (1)

In general, the main goal consists in determining the law of the entire stochastic location process
X = {Xt, t ≥ 0}, given the law of the random velocity field U. Despite much work being done
on this problem, we still have only a limited ability to derive results about the law of the particle
position Xt from the law of the velocity field U(x, t).

Closely related to the passive tracer problem, there exists the problem of determining the law of
the Lagrangian velocity process U = {U(Xt, t), t ≥ 0}, which is the particle’s velocity viewed by an
observer whose location Xt is determined by the environment. The Eulerian description provided
by U(x, t), for which the coordinate system is fixed, is different from the Lagrangian description
U(Xt, t), that gives a description of the velocity field from the view of a particle following the
velocity field. Naturally, Xt is the time integral of U(Xs, s) from 0 to t.

For this work we use a velocity field written as a sum of finitely many Fourier modes as

U(x, t) =
1√
N

N∑
n=1

Rn sin(Wn ·x + Φn) Θn, x ∈ R2, (2)

with Θn = W⊥
n = [−Wn,2,Wn,1]T , where Wn = [Wn,1,Wn,2]T , for n = 1, 2, . . . , N , and random

amplitudes Rn and random wave numbers Wn are independent of the random phases Φn, in the
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sense that the collection (R1,W1, R2,W2, · · · , RN ,WN ) is independent of (Φ1,Φ2, . . . ,ΦN ). In
addition, we assume that the random phases Φn, n = 1, 2, . . . , N , are independent and uniformly
distributed on [0, 2π], and random vectors (Rn,Wn), n = 1, 2, . . . , N have finite joint moments.

The velocity field U(x, t) is two-dimensional, mean-zero, homogeneous, stationary, and incom-
pressible [7]; these are key statistical properties of real turbulence. Unlike real turbulence, however,
it is also steady; U(x, t) does not actually depend on t. However, by choosing the amplitudes Rn
and wave numbers Wn, one can approximate a wide variety of probability laws for U. The wave
numbers Wn can take on large values to model rapidly-changing flow fields. The velocity field
is not periodic, so it can model an arbitrarily large flow field with large–scale changes driven by
small wave numbers Wn. Finally, as we will see below, the simplest form of the results occurs as
N goes to infinity, so that a large variety of wave numbers is included in the model.

Similar models for the random velocity field U(x, t) are available in the literature and are
used combined with computer simulations to get many numerical results [1, 3–5]. Different from
many works, we perform exact calculations of important statistics of the Lagrangian velocity
U(Xt, t) and, ultimately, obtain information about the stochastic process {Xt, t ≥ 0} without
using simulations or approximations.

2 The Lagrangian auto-covariance function

The Lagrangian auto-correlation is the matrix-valued function ΣL(s, t) = E
[
U(Xs, s)U(Xt, t)

T
]

where Xt satisfies the equation of the motion and the initial condition according to Eq.(1).

Remark 2.1. Suppose U(x, t) is a mean-zero, homogeneous, stationary, and divergence free ran-
dom field on R2. Then the stochastic process {U(Xt, t), t ≥ 0} is a stationary process and so
Lagrangian auto-covariance depends on the difference t′− s′, see [8]. Let t = t′− s′, then we write

ΣL(s′, t′) = ΣL(0, t′ − s′) = ΣL(t). (3)

Remark 2.2. Because Xt =
∫ t
0

U(Xs, s)ds, we have E
[
XtX

T
t

]
=
∫ t
0

∫ t
0

ΣL(s − s′)ds ds′. Thus,
we can see how quickly the particle moves away from the origin by calculating the function ΣL(t).

Plugging Eq.(2) into Eq.(3) and assuming finite joint moments, we explicitly get the expression

ΣL(t) =
1

N

N∑
p1,p2=1

E
[
Rp1Rp2Θp1Θ

T
p2 sin(Φp1) sin(Wp2 ·Xt + Φp2)

]
. (4)

In general, it is not possible to evaluate the expectations in Eq.(4) since the distribution of the
stochastic process {Xt, t ≥ 0} is unknown and presumably a function of all random variables in
the model. However, we know that X0 = 0 with probability 1. This suggests that we can expand
the Taylor series for the Lagrangian auto-covariance ΣL(t) around t = 0, as in Eq.(5):

ΣL(t) =

∞∑
m=0

1

m!

dm

dtm
(ΣL(t))]t=0 t

m. (5)

3 Calculating Taylor coefficients

In order to evaluate Taylor coefficients for the Lagrangian auto-correlation function we need to
calculate derivatives of Eq.(4). Using usual calculus rules for multi-dimensional variables we can
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get a formula for the mth-order derivative of ΣL(t). After calculating a few derivatives by hand,
the structure of each derivative becomes clear as we will explain. See [7] for more details.

Let T be the tree diagram represented in Figure 1. The mth level of T has m! nodes, each one
denoted by some constant Kβ

α = Wα ·W⊥
β , 1 ≤ α, β ≤ N , and each branch i of T from the root

to level m will have associated with it a number Ki which equals the product of the Kβ
α values

along the m + 1 nodes in that branch. We will use the following abbreviations: Sp1 = sin(Φp1),
Cp1 = cos(Φp1), Spj = sin(Wpj ·Xt + Φpj ), and Cpj = cos(Wpj ·Xt + Φpj ), for all integers j > 1.

Theorem 3.1. The mth-order derivative of ΣL(t) can be written in terms of the m! branches of
T of order m as

dmΣL(t)

dtm
=

1

Nm/2+1

N∑
p1,...,pm+2=1

∑
i∈T

E
[
Rp1 · · ·Rpm+2Θp1Θ

T
p2KiSp1D

i(Sp2 · · ·Spm+1)Spm+2

]
,

(6)
where i = (i3, . . . , im+2) is a multi-index which ranges over the routes from the root of the tree to
the leaves, Ki is the product along branch i, and Di is a multi-index differentiation operator.

Figure 1: Tree diagram T with branches up to order 4.

Remark 3.1. Notice that the total number of terms on the right side of Eq.(6) is Nm+2m!, where
N is the number of Fourier modes and m is the derivative order. However, we will see that many
terms are zero.

Remark 3.2. Figure 1 shows the tree T of order 4 with one branch highlighted. The product
Ki for the highlighted branch of T is Ki = 1·Kp3

p2K
p4
p2K

p5
p2K

p6
p2 . The multi-index for this branch is

i = (2, 2, 2, 2). The product down the next branch of T is Ki = 1·Kp3
p2K

p4
p2K

p5
p2K

p6
p3 for i = (2, 2, 2, 3).

Remark 3.3. Notice that Kα
α = Wα ·W⊥

α = 0. Thus, when summing over p1, . . . , pm+2, it often
happens that one of the factors in the product down a branch of T is 0, and so the whole term is 0.

Remark 3.4. The differential operator Di is a product of derivatives of sine functions with respect
to t given by

Di(Sp2 . . . Spm+1) = Dη2(Sp2) . . . Dηm+1(Spm+1), (7)
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where ηj is the total number of times that index j appears in i and D0(S∗) = S∗, D
1(S∗) = C∗,

D2(S∗) = −S∗, D3(S∗) = −C∗, D4(S∗) = S∗, and so on. For example, if i = (2, 2, 3, 4) then we
have that Di(Sp2Sp3Sp4Sp5) = D2(Sp2)D1(Sp3)D1(Sp4)D0(Sp5) = −Sp2Cp3Cp4Sp5 .

Using that collections of random variables (R1,W1, R2,W2, · · · , RN ,WN ) and (Φ1,Φ2, . . . ,ΦN )
are independent and evaluating Eq.(6) at t = 0 gives

dmΣL(t)

dtm

]
t=0

=
1

Nm/2+1

∑
p∈P

∑
i∈T

E [Gp
i (R,W)]E [F pi (S,C)] , (8)

where p = (p1, p2, . . . , pm+2) ∈ P with P = {1, 2, . . . , N}m+2, Gp
i (R,W) = Rp1 · · ·Rpm+2

Θp1Θ
T
p2Ki

is a function of random amplitudes and wave numbers, and F pi (S,C) = Sp1D
i(Sp2 · · ·Spm+1)Spm+2

is a function of random phases, for each i ∈ T . Note that because we are evaluating at t = 0, the
abbreviation Spj now equals sin(Φpj ) and Cpj equals cos(Φpj ).

The general results above become much clearer when written out for specific values of m and i.
Conversely, it is by doing specific calculations that the general result is found and understood. We
also wrote code to generate symbolic expressions for each term. The hand calculations for small
orders allow us to validate our code. The coded procedure is much faster than hand calculations
and reduces the risk of manual computation error. Using the program, we get symbolic expressions
for terms E [Gp

i (R,W)]E [F pi (S,C)], for m = 2,. . ., 10.

Example 3.1. Consider the case when m = 4, that is, to evaluate the 4th-order derivative of
ΣL(t) at t = 0. We can get an expression for all terms E

[
Gi
p(R,W)

]
E
[
F ip(S,C)

]
, for each i ∈ T ,

in Eq.(8). For example, for i = (2, 2, 2, 2) we have

E
[
Gi
p(R,W)

]
E
[
F ip(S,C)

]
=E

[
Rp1 . . . Rp6Θp1Θ

T
p2K

p3
p2K

p4
p2K

p5
p2K

p6
p2

]
E [Sp1Sp2Sp3Sp4Sp5Sp6 ] . (9)

Our code produces the output in Figure 2 for this term.

Output 01 of 24, for i=( 2 2 2 2):

+1 * E[Rp1 Rp2 Rp3 Rp4 Rp5 Rp6 * Thetap1 Thetap2^T * (Kp2^p3)(Kp2^p4)(Kp2^p5)(Kp2^p6)] * E[Sp1 Sp2 Sp3 Sp4 Sp5 Sp6]

Output 13 of 24, for i=( 2 3 2 2):

-1 * E[Rp1 Rp2 Rp3 Rp4 Rp5 Rp6 * Thetap1 Thetap2^T * (Kp2^p3)(Kp3^p4)(Kp2^p5)(Kp2^p6)] * E[Sp1 Cp2 Cp3 Sp4 Sp5 Sp6]

Figure 2: Computer output for m = 4 and i = (2, 2, 2, 2).

In the same way, we can obtain an expression for all terms in the summation, for each i ∈ T in
Eq.(8). Notice that the 4th-level of T has 24 branches and so the total number of terms like Eq.(9)
is 24, as i varies over T , and for each value of i, there are many ways to choose the numbers
p1, . . . , p6 from 1 to N .

Recall that the random phases Φpj are independent and uniformly distributed on [0, 2π]. So
we can evaluate the trigonometric expectation factors E [F pi (S,C)] in Eq.(8) since we know their
distributions. In fact, if m ≥ 1 is an odd integer then there are an odd number of trigonometric
factors to integrate over, which integrates to 0. Thus all factors E [F pi (S,C)] are 0 and so all
odd-order Taylor coefficients in the expansion of the Lagrangian auto-covariance function ΣL(t)
are also 0, see [7]. Therefore, we can just focus on even-order Taylor coefficients. Many of the
E [F pi (S,C)] factors will again be zero. Taking Eq.(9) as an example, if the numbers p1, p2, . . . , p6
are all distinct, the expected value will be zero. The numbers p1, . . . , p6 need to be equal in pairs,
or fours, or sixes to get non-zero integrals, and sine and cosine terms must also occur in pairs.
Thus, many of the individual terms in Eq.(8) are zero.
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3.1 Velocity fields with many Fourier modes

Looking further at terms involving trigonometric expectations such as E [F pi (S,C)], for i ∈ T ,
in Eq.(8), we realize that the number of terms with the pj equal in fours or sixes are much smaller
than the normalization factor Nm+2, see [7]. In fact, allowing the number of Fourier modes N
to go to infinity, only trigonometric expectations having pairwise equal random phases as their
arguments need to be taken into consideration.

For the rest of the paper we assume that the random variables (R1,W1), . . . , (RN ,WN ) are in-
dependent and identically distributed. This allows us to recognize that as we sum over p1, . . . , pm+2

going from 1 to N , many of the terms have the same numerical values.

Remark 3.5. Notice that we only need to consider indices p1, . . . , pm+2 taking numerical values
in the set {1, 2, . . . ,m/2 + 1} since random variables are identically distributed. Moreover, there
are (m + 1)(m − 1) · · · 3 · 1 distinct ways to choose such numerical values. Let D be the set of all
distinct ways of arranging numbers {1, 2, . . . ,m/2 + 1} in m/2 + 1 positions. For each p ∈ D,
there are N(N − 1) . . . (N −m/2) terms as E [Gp

i (R,W)]E [F pi (S,C)] in Eq.(8), and all of them
are equal numerically. After taking the limit as N →∞, we can write Eq.(8) as

lim
N→∞

dmΣL(t)

dtm

]
t=0

=
∑
i∈T

∑
p∈D

E
[
Gi
p(R,W)

]
E
[
F ip(S,C)

]
, (10)

and the right hand side of Eq.(10) has (m+1)(m−1) · · · 1·m! terms, which does not depend on N .

Example 3.2. For m = 4, we can take p = (p1, p2, . . . , p6) ∈ D, which is the set of all distinct
ways of arranging numbers {1, 2, 3} in 6 positions. In this case, the set D has 5·3·1 = 15 elements:

D = {(1, 2, 3, 3, 2, 1), (1, 2, 1, 3, 3, 2), (1, 2, 3, 2, 1, 3), (1, 1, 2, 3, 2, 3), (1, 2, 2, 1, 3, 3),

(1, 2, 3, 2, 3, 1), (1, 2, 3, 1, 3, 2), (1, 2, 3, 1, 2, 3), (1, 2, 1, 3, 2, 3), (1, 2, 1, 2, 3, 3),

(1, 2, 2, 3, 3, 1), (1, 2, 3, 3, 1, 2), (1, 1, 2, 3, 3, 2), (1, 2, 2, 3, 1, 3), (1, 1, 2, 2, 3, 3)}.
(11)

In Figure 3, we have symbolic expressions for terms as in Eq.(9) when p varies over the set D.
Notice that all but three terms in the list are 0 because some factor Kα

α = 0, for some α = 1, 2, 3.

Output 01 of 24, for i=( 2 2 2 2):
General term:
+1 * E[Rp1 Rp2 Rp3 Rp4 Rp5 Rp6 * Thetap1 Thetap2^T * (Kp2^p3)(Kp2^p4)(Kp2^p5)(Kp2^p6)] * E[Sp1 Sp2 Sp3 Sp4 Sp5 Sp6]
Specific terms for 15 choices of p, with Theta_p^q as an abbreviation for Theta_p Theta_q^T:
-1 * E[R1^2 R2^2 R3^2 * Theta_1^2 * (K_1^2)(K_2^2)(K_2^3)(K_2^3)] * E[S1 S2 S3 S3 S2 S1] = 0
-1 * E[R1^2 R2^2 R3^2 * Theta_1^2 * (K_1^2)(K_2^2)(K_2^3)(K_2^3)] * E[S1 S2 S1 S3 S3 S2] = 0
-1 * E[R1^2 R2^2 R3^2 * Theta_1^2 * (K_1^2)(K_2^2)(K_2^3)(K_2^3)] * E[S1 S2 S3 S2 S1 S3] = 0
1 * E[R1^2 R2^2 R3^2 * Theta_1^1 * (K_1^2)(K_1^2)(K_1^3)(K_1^3)] * E[S1 S1 S2 S3 S2 S3] = ? (line 04)

-1 * E[R1^2 R2^2 R3^2 * Theta_1^2 * (K_1^2)(K_2^2)(K_2^3)(K_2^3)] * E[S1 S2 S2 S1 S3 S3] = 0
-1 * E[R1^2 R2^2 R3^2 * Theta_1^2 * (K_1^2)(K_2^2)(K_2^3)(K_2^3)] * E[S1 S2 S3 S2 S3 S1] = 0
-1 * E[R1^2 R2^2 R3^2 * Theta_1^2 * (K_1^2)(K_2^2)(K_2^3)(K_2^3)] * E[S1 S2 S3 S1 S3 S2] = 0
-1 * E[R1^2 R2^2 R3^2 * Theta_1^2 * (K_1^2)(K_2^2)(K_2^3)(K_2^3)] * E[S1 S2 S3 S1 S2 S3] = 0
-1 * E[R1^2 R2^2 R3^2 * Theta_1^2 * (K_1^2)(K_2^2)(K_2^3)(K_2^3)] * E[S1 S2 S1 S3 S2 S3] = 0
-1 * E[R1^2 R2^2 R3^2 * Theta_1^2 * (K_1^2)(K_2^2)(K_2^3)(K_2^3)] * E[S1 S2 S1 S2 S3 S3] = 0
-1 * E[R1^2 R2^2 R3^2 * Theta_1^2 * (K_1^2)(K_2^2)(K_2^3)(K_2^3)] * E[S1 S2 S2 S3 S3 S1] = 0
-1 * E[R1^2 R2^2 R3^2 * Theta_1^2 * (K_1^2)(K_2^2)(K_2^3)(K_2^3)] * E[S1 S2 S3 S3 S1 S2] = 0
1 * E[R1^2 R2^2 R3^2 * Theta_1^1 * (K_1^2)(K_1^2)(K_1^3)(K_1^3)] * E[S1 S1 S2 S3 S3 S2] = ? (line 13)

-1 * E[R1^2 R2^2 R3^2 * Theta_1^2 * (K_1^2)(K_2^2)(K_2^3)(K_2^3)] * E[S1 S2 S2 S3 S1 S3] = 0
1 * E[R1^2 R2^2 R3^2 * Theta_1^1 * (K_1^2)(K_1^2)(K_1^3)(K_1^3)] * E[S1 S1 S2 S2 S3 S3] = ? (line 15)

Figure 3: Computer output for m = 4, i = (2, 2, 2, 2), ranging over the 15 choices of p ∈ D.

Remark 3.6. Notice that in order to calculate the 4th-order derivative of ΣL(t) at t = 0 we need
to evaluate 360 terms since T has 24 elements and D has 15 elements. However, many of these
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terms are 0. In fact, after listing all non-zero terms we end up with a list having 39 terms. We also
can relabel some indices and sort factors to group similar terms. For example, the terms in lines
13 and 15 in Figure 3 have the same numerical value. Finally, we end up with a list having only 4
distinct terms, as shown in Figure 4. The first term is non-zero, but because the same term occurs
multiple times and Kβ

α = −Kα
β , its coefficient happens to be zero. We refer to it as a non-null

term. This is yet another way that terms drop out of the large sum we must calculate.

Distinct terms for m=4:

0 * E[R1^2 R2^2 R3^2 * Theta_1^2 * (K_1^3)(K_2^3)(K_2^3)(K_2^3)] * E[S1^2]^3
1 * E[R1^2 R2^2 R3^2 * Theta_1^1 * (K_1^2)(K_1^2)(K_2^3)(K_2^3)] * E[S1^2]^3
3 * E[R1^2 R2^2 R3^2 * Theta_1^1 * (K_1^2)(K_1^2)(K_1^3)(K_1^3)] * E[S1^2]^3

-5 * E[R1^2 R2^2 R3^2 * Theta_1^2 * (K_1^2)(K_1^2)(K_1^3)(K_2^3)] * E[S1^2]^3

Figure 4: Computer output of distinct terms for m = 4 .

Remark 3.7. The symbolic expressions in Figure 4 depend on the joint distribution of the random
variables (Rn,Wn) and the numerical value of E

[
S2
1

]
, which is 0.5. To calculate numerically,

recognize that the Theta factors are 2 by 2 matrices made up of components of the wave number
W, and the K factors are dot products of wave numbers. One can multiply these out, use linearity
to separate out terms, then use independence of the (Rn,Wn) to get a product of expected values.
This reduces the computation to joint moments of R and W. The highest moment encountered
will be E

[
R2|W|m+2

]
. Therefore, the methodology we use to obtain Taylor coefficients for the

Lagrangian auto-covariance function is quite general and allows us to explore a large variety of
scenarios just by changing the joint distribution of random amplitudes and random wave numbers.

3.2 Results

In Table 1, we present a summary for the number of terms that each derivative order demands
to be numerically evaluated up to order m = 10. We notice the number of distinct non-null terms
in each Taylor coefficient is much smaller than the total number of terms.

Table 1: Summary for non-zero terms.

Order # terms # non-zero terms % non-zero terms # distinct non-null terms

2 6.00× 1000 1.00× 100 16.67% 1
4 3.60× 1002 3.90× 101 10.83% 3
6 7.56× 1004 5.00× 103 06.61% 22
8 3.81× 1007 1.43× 106 03.75% 295
10 3.77× 1010 7.92× 108 02.10% 6363

3.3 Some limitations

Notice that the number of terms needed to evaluate the mth-order derivative of the Lagrangian
auto-covariance function is (m+ 1)(m− 1) · · · 1·m!, according to Eq.(10). This demands a lot of
computational work even for small order derivatives. We are able to perform such calculations up
to order m = 10, which means we are able to numerically calculate only the first five non-zero terms
of the Taylor expansion. So far, there is no shortcut to obtain just the non-zero terms. Moreover,
it seems that the Taylor series converges slowly, when it does converge, so it is fundamental to be
able to evaluate higher order Taylor coefficients.
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4 Conclusion

In this work, we expand the Lagrangian auto-covariance function ΣL(t) as a Taylor series
for a random velocity field U(x, t) written as a sum of N Fourier modes. To evaluate the mth

Taylor coefficient we start with an expression that depends on Nm+2m! terms. Assuming some
mild conditions on the parameters of the model and letting the number of Fourier modes go to
infinity, then the number of terms needed to evaluate the mth-order derivative of the Lagrangian
auto-covariance is (m + 1)(m − 1) · · · 1 · m!, which is large but no longer depends on N . Using
an appropriate programming language we are able to obtain all those terms, for small derivative
orders, and write them down as symbolic expressions or as strings of characters. This allows us to
identify terms that are equal to zero and to combine like terms, and thus drastically reduce the
number of distinct terms. Moreover, we can convert these symbolic expressions into executable
command lines to numerically calculate Taylor coefficients.

We are able to explore different scenarios, for different configurations of the parameters of the
random velocity field, and get the Taylor expansion for the Lagrangian auto-covariance function
just by setting new distributions for the parameters in the model. In this way, we can generate the
Lagrangian auto-covariance function much faster than using Monte Carlo simulations for a large
variety of parameter combinations.
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