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E-mail: jeferson@ibilce.unesp.br

Tatiana Miguel Rodrigues
Depto de Matemática, FC, UNESP
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Resumo: In this work we give arithmetical properties for the boundary of a class of Rauzy frac-
tals Ra given by the polynomial x3 − ax2 + x− 1, a ≥ 3. We give an automaton that generates
this boundary and we prove that it is homeomorphic to S1.
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1 Introduction

The Rauzy fractal was studied by many mathematicians and was connected to to many topics as:
numeration systems ([8],[6]), geometrical representation of symbolic dynamical system ([2], [7]),
multidimensional continued fractions and simultaneous approximations ([3], [5]), auto-similar
tilings ([2], [8]) and Markov partitions of Hyperbolic automorphisms of Torus ([7], [8]). There
are many ways of constructing Rauzy’s fractals one of them is by β-expansions.

Let β > 1 be a fixed real number and x any positive real number. Using Greedy algorithm

we can write x =
∞∑

i=N0

a−iβ
−i, a−i ∈ Z ∩ [0, β) (β expansion of x). A Pisot number β > 1 is an

algebraic integer whose conjugates other than itself have modulus less than one. Let Fin(β) be
a set consisting of all finite β−expansion and consider the condition

Fin(β) = Z[β−1] ∩ R+ (property F )

The Pisot numbers that satisfy property (F) were characterized in [1] as being exactly the
set of dominant roots of the polynomial (with integers coefficients)

Pa,b(x) = x3 − ax2 − bx− 1, a ≥ 0, −1 ≤ b ≤ a+ 1.

(If b = −1 add the restriction a ≥ 2). In particular, this set is divided into three subsets:

a) 0 ≥ b ≥ a, and in this case d(1, β) = ·ab1.

b) b = −1, a ≥ 2. In this case d(1, β) = ·(a− 1)(a− 1)01.

c) b = a+1, and in this case d(1, β) = ·(a+1)00a1, where d(1, β) is the Rényi β-representation
of 1 (see citerényi).

We can associated a fractal to each of this cases above. The fractal associated to (b) is given
by

Ra =

{ ∞∑
i=2

aiα
i, aiai−1ai−2ai−3 <lex (a− 1)(a− 1)01, ∀i ≥ 5

}
,
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where <lex is the lexicographic order on finite words. In [4] we prove some topological and
arithmetic properties of Ra and give a complete description of the boundary of R2. The purpose
of this work is to present a complete description of the boundary of Ra, a ≥ 3. For this we need
the following results:

Theorem 1.1. Ra induces a periodic tiling of the plane C modulo Z(α−1)+Z(α2−α). Moreover

∂Ra =
⋃
v∈B

(Ra ∩ (Ra + v)), B = {±(α− 1);±(α2 − α);±(α2 − 1);±(α2 − 2α+ 1)},

Ra ∩ (Ra + (α2 − 1)) = {−1}; Ra ∩ (Ra + (α2 − 2α+ 1)) = {−α}.

Theorem 1.2. Consider g(z) = α− 1 + α(z). Then

Rα−1 = Ra ∩ (Ra + α− 1) = g(Ra ∩ (Ra + (α2 − α)))

2 Parametrization of the boundary of Ra,∀a ≥ 3

In this section we give a complete description of the boundary of Ra. By theorem 1.1 we have
to study the sets Ra ∩ (Ra + v), v ∈ {±(α− 1),±(α2 − α)}. By symmetry and theorem 1.2 we
can just study the set Rα−1.

In [4] we show that the automaton below characterize the boundary of Ra.

Figure 1: Automaton A

Using the automaton we have Rα−1 = R1
α−1

⋃
R2
α−1 where

R1
α−1 = {z = α− 1 +

∑
i=3 aiα

i = (a− 1)α2 +
∑

i=3 biα
i, (a3, b3) = (ε, ε), ε = 0, ..., a− 1},

R2
α−1 = {z = α− 1 +

∑
i=3 aiα

i = (a− 1)α2 +
∑

i=3 biα
i, (a3, b3) = (ε+ 1, ε), ε = 0, ..., a− 2}.

Lemma 2.1. Considering R1,t
α−1 = {z ∈ R1

α−1; (a3, b3) = (t, t), t = 0, 1...a− 1},
R2,t
α−1 = {z ∈ R2

α−1; (a3, b3) = (t, t − 1), t = 1, 2...a − 1} and R
′
α−1 = {z ∈ Rα−1; a3 6= a − 1}.

We have:

1. g2k+1 : Rα−1 −→ R2,a−1−k
α−1 given by g2k+1(z) = −1−kα3+α3z, k = 0, ..., a−2 is bijective.

2. g2(a−1) : Rα−1 −→ R1,0
α−1 given by g2(a−1)(z) = α− 1 + α2zis bijective.

3. g2k : R
′
α−1 −→ R1,a−1−k

α−1 given by g2k(z) = α− 1 + (a− 1− k)α3 + α2z, k = 0, ..., a− 2 is
bijective.
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Corollary 2.2.

Rα−1 =

2(a−1)⋃
i=0

gi(X)

where X = Rα−1 if i is odd and 2(a− 1) and X = R′α−1 if i is even.

Using the previous notation and taking u = −1, v = −(a− 1)α− α−1, w = −1− α3 we have
the following lemma.

Lemma 2.3. g2k(−1−α3) = −1−α2−kα3−(a−1)α4 = g2k+1(−(a−1)α−α−1), k = 0, ..., a−2,
and g2k+1(−1) = −1− (k + 1)α3 = g2(k+1)(−(a− 1)α− α−1), k = 0, ..., a− 2.

Lemma 2.4. Take r = 2a− 1. Then we have

1. lim
n−→∞

(g0 ◦ gr−1)n(z) = u = −1.

2. lim
n−→∞

(gr−1 ◦ g0)n(z) = v = −(a− 1)α− α−1, ∀z ∈ R′α−1.

Lemma 2.5. Take t ∈ [0, 1], a ≥ 3, r = 2a− 1. Then

1. t =
a1
r

+B +

∞∑
k=3

mk+nk=k

ak
(r − 2)mkrnk

where

(a) B =


a2
r2

, a2 ∈ {0, 1, 2, ..., r − 1} if a1 ∈ {1, 3, 5, ..., r − 2, r − 1}

a2
(r − 2)r

, a2 ∈ {0∗, 1∗, ..., (r − 3)∗} if a1 ∈ {0, 2, 4, ..., r − 3}

and for i ≥ 3 we have:

(b) If ai−1 = 0, 0∗, i− 1 even or ai−1 = (r − 3)∗, r − 1, i− 1 odd or ai−1 = r − 2, (2n−
1), (2n− 1)∗, n = 1, ..., a− 2 then ai ∈ {0, 1, 2..., r− 1}, mi = mi−1 and ni = ni−1 + 1.

(c) If ai−1 = 0, 0∗, i − 1 odd or ai−1 = (r − 3)∗, r − 1, i − 1 even or ai−1 = r −
3, (2n), (2n)∗, n = 1, ..., a − 3 then ai ∈ {0∗, 1∗, ...(r − 3)∗}, mi = mi−1 + 1 and
ni = ni−1.

2. If |t′ − t| < (r − 2)mrn with m+ n = N then there exists k < N such that

(a) t = a1 . . . ak−1ak(r − 1)(r − 1)(r − 3)∗(r − 1)(r − 3)∗...aN+1..., t
′ = a1 . . . ak−1(ak +

1)00...a′N+1... if k is even and ak = 0, 0?, r − 2, (2n− 1), (2n− 1)∗, n = 1, ..., a− 2.

(b) t = a1 . . . ak−1ak(r−1)(r−3)∗(r−1)(r−3)∗...aN+1..., t
′ = a1 . . . ak−1(ak+1)00...a′N+1...

if k is odd and ak = r − 2, (2n− 1), (2n− 1)∗, n = 1, ..., a− 2.

(c) t = a1 . . . ak−1ak(r − 3)∗(r − 3)∗(r − 1)(r − 3)∗(r − 1)...aN+1..., t
′ = a1 . . . ak−1(ak +

1)00...a′N+1... if k is odd and ak = 0, 0?, r − 3, (2n), (2n)∗, n = 1, ..., a− 3.

(d) t = a1 . . . ak−1ak(r−3)∗(r−1)(r−3)∗(r−1)...aN+1..., t
′ = a1 . . . ak−1(ak+1)00...a′N+1...

if k is even and ak = r − 3, (2n), (2n)∗, n = 1, ..., a− 3.

Proof:

1. Take t, t′ ∈ [0, 1], |t′− t| < (r− 2)mrn with m+n = N and suppose t < t′. Then exist k ∈
N, k < N such that t = a1 . . . ak−1akak+1...aNaN+1..., t

′ = a1 . . . ak−1a
′
ka
′
k+1...a

′
Na
′
N+1..., ak <

a′k and

t′ − t =
(a′k − ak)

(r − 2)mkrnk
+ ... =

(a′k − ak − 1)

(r − 2)mkrnk
+

1

(r − 2)mkrnk
+ ....

As mk + nk = k and |t′ − t| < (r − 2)mrn,m + n > N > k then a′k − ak − 1 = 0, that is,
a′k = ak + 1.
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(a) Let k be an even number and ak = 0, 0∗, r − 2, (2n − 1), (2n − 1)∗, n = 1, ..., a − 2.
Then ak+1 ∈ {0, 1, ..., r − 1} and we can write

1

(r − 2)mkrnk
=

r − 1

(r − 2)mkrnk+1
+

∞∑
i=0

(
r − 1

(r − 2)mk+irnk+2+i
+

(r − 3)∗

(r − 2)mk+1+irnk+2+i

)
.

Therefore

t′ − t =
a′k+1

(r − 2)m
′
k+1rn

′
k+1

− ak+1

(r − 2)mkrnk+1
+

(r − 1)

(r − 2)mkrnk+1
+ ... =

=
a′k+1

(r − 2)m
′
k+1rn

′
k+1

+
r − 1− ak+1

(r − 2)mkrnk+1
+ ...

where m′k+1+n′k+1 = mk+nk+1 = k+1. As |t′− t| < (r−2)mrn,m+n > N ≥ k+1

then
a′k+1

(r−2)m
′
k+1r

n′
k+1

+
r−1−ak+1

(r−2)mkrnk+1 = 0 and it is possible only with a′k+1 = 0, 0∗ and

ak+1 = r − 1.
As ak+1 = r − 1 and k + 1 is an odd number, then ak+2 ∈ {0, 1, ..., r − 1} we have

t′ − t =
a′k+2

(r − 2)m
′
k+2rn

′
k+2

− ak+2

(r − 2)mkrnk+2
+

r − 1

(r − 2)mkrnk+2
+ ... =

=
a′k+2

(r − 2)m
′
k+2rn

′
k+2

+
r − 1− ak+2

(r − 2)mkrnk+2
+ ....

with m′k+2 +n′k+2 = mk +nk + 2 = k+ 2. Again we have a′k+2 = 0, 0∗ e ak+2 = r− 1.
Now ak+2 = r− 1 and k+ 2 is an even number. Then ak+3 ∈ {0∗, 1∗, ...(r− 3)∗} and

t′ − t =
a′k+3

(r − 2)m
′
k+3rn

′
k+3

− ak+3

(r − 2)mk+1rnk+2
+

(r − 3)∗

(r − 2)mk+1rnk+2
+ ... =

=
a′k+3

(r − 2)m
′
k+3rn

′
k+3

+
(r − 3)∗ − ak+3

(r − 2)mk+1rnk+2
+ ....

with m′k+3 + n′k+3 = mk + nk + 3 = k + 3. Therefore a′k+3 = 0, 0∗ e ak+3 = (r − 3)∗.
Following this idea we have the result.

Following this idea we can prove the others items.

�

Corollary 2.6. Using the notations of lemma 2.5, if t, t′ ∈ [0, 1] then t = t′ if and only if

1. t = a1...ak−1ak(r − 1)(r − 1)(r − 3)∗, t′ = a1...ak−1(ak + 1)0 or;

2. t = a1...ak−1ak(r − 1)(r − 3)∗, t′ = a1...ak−1(ak + 1)0 or;

3. t = a1...ak−1ak(r − 3)∗(r − 3)∗(r − 1), t′ = a1...ak−1(ak + 1)0 or;

4. t = a1...ak−1ak(r − 3)∗(r − 1), t′ = a1...ak−1(ak + 1)0 .

Let A = {0, 1, ..., r − 1} be a subset of N and consider

ψ : AN −→ AN

(ai) 7−→ (bi)

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 3, N. 1, 2015.

DOI: 10.5540/03.2015.003.01.0013 010013-4 © 2015 SBMAC

http://dx.doi.org/10.5540/03.2015.003.01.0013


given by
b1 = a1;
b2k = r − 1− a2k;
b2k+1 = a2k+1 if a2k ∈ {0, 0∗, 2n− 1, (2n− 1)∗, n = 1..., a− 2, r − 2};
b2k+1 = a2k+1 + 2 if a2k ∈ {2n, (2n)∗, n = 1, ..., a− 2, r − 1}.

Take x0 ∈ R′α−1 and consider f : [0, 1] −→ Rα−1 defined as follows:

if t =
∞∑
i=1

ai(r− 2)−mir−ni , (ai) ∈ AN, then f(t) = lim
n→∞

gb1 ◦ gb2 ◦ ... ◦ gbn(x0) where ψ(a1a2...) =

b1b2....

Theorem 2.7. f is a continue and bijective function satisfying f(0) = u and f(1) = v.

Proof:

1. f is a well defined function.
We are going to use the following notation: gb1 ...gbk−1

gbk(z) = b1...bk.
According lemma 2.4 we have
u = −1 = 0(r − 1)0(r − 1)... = 0(r − 1).

v = −(a− 1)α− α−1 = (r − 1)0(r − 1)0... = (r − 1)0.

w = −1− α3 = 2(r − 1)0(r − 1)0... = 2(r − 1)0.
We have to consider all the cases of corollary 2.6 .

(a) Let k be an even number and ak = 0, 0∗, r−2, (2n−1), (2n−1)∗, n = 1, ..., a−2, ak+1 =
1, 1∗, r − 1, 2n, (2n)∗.
Suppose that t = a1...ak−1ak(r − 1)(r − 1)(r − 3)∗ = a1...ak−1(ak + 1)0 = t′. Then:
f(t) = b1...bk−1(r − 1)(r − 1)0 and f(t′) = b1...bk−1(r − 2)0(r − 1), if ak = 0, 0∗;
f(t) = b1...bk−1(r − 2n)(r − 1)0 and f(t′) = b1...bk−1(r − 2n− 1)2(r − 1)0 if
ak = 2n− 1, (2n− 1)∗;
f(t) = b1...bk−11(r − 1)0 and f(t′) = b1...bk−102(r − 1)0 if ak = r − 2.
For all these cases we have f(t) = f(t′).

(b) Let k be an odd number and ak = r − 2, (2n− 1), (2n− 1)∗, n = 1, ..., a− 2.

(c) Let k be an odd number and ak = 0, 0∗, r − 3, (2n), (2n)∗, n = 1, ..., a− 3.

(d) Let k be an even number and ak = r − 3, (2n), (2n)∗, n = 1, ..., a− 3.
For all these cases the proof is similar to (a).

2. Suppose that f(t) = f(t′). According to lemma 2.3 we have two possibilities:

(a) f(t) = gb1 ...gbk−1
gbk(−1), bk ∈ {1, 3, 5, ..., r − 2} and f(t′) = gb1 ...gbk−1

gbk+1(v).
Using the above notations we have
f(t) = b1...bk−1bk0(r − 1) and f(t′) = b1...bk−1(bk + 1)(r − 1)0.

i. k is an even number, bk 6= r − 2.
In this case bk = r−1−ak and then ak = r−1−bk is an odd number. According
to the rules:
- bk+1 = 0, ak odd number ⇒ ak+1 = 0.
- bk+2 = r − 1, k + 2 even number ⇒ ak+2 = 0.
- bk+3 = 0, ak+2 = 0⇒ ak+3 = 0.
Therefore t = a1...ak−1(r − 1− bk)0.
We also have b′k = bk + 1 = r − 1 − a′k and then a′k = r − 2 − bk 6= 0 is an even
number. According to the rules:
- b′k+1 = r − 1, a′k even ⇒ a′k+1 = (r − 3)∗.
- b′k+2 = 0, k + 2 even ⇒ a′k+2 = r − 1.
- b′k+3 = r − 1, a′k+2 = r − 1⇒ ak+3 = (r − 3)∗.

Therefore t′ = a1...ak−1(r − 2− bk)(r − 3)∗(r − 1) and then t = t′.
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ii. k is an even number, bk = r − 2. In this case bk = r − 1 − ak and then ak =
r − 1− bk = 1.

iii. k is an odd number. In this case bk = ak or bk = ak + 2 and then ak = bk or
ak = bk − 2. The proof is similar to (i)

(b) f(t) = gb1 ...gbk−1
gbk(−1 − α3), bk ∈ {0, 2, ..., r − 3} and f(t′) = gb1 ...gbk−1

gbk+1(v).
Here the proof is similar to (a).

3. f is a continuous function
Let us consider t, t′ ∈ [0, 1] given by

t =
a1
r

+B +
∞∑
k=3

mk+nk=k

ak
(r − 2)mkrnk

, t′ =
a′1
r

+B′ +
∞∑
k=3

m′
k
+n′

k
=k

a′k
(r − 2)m

′
krn

′
k

.

If |t′ − t| < (r − 2)mrn then according to lemma (2.5) we have to consider the following
cases:
• t = a1 . . . ak−1ak(r − 1)(r − 1)(r − 3)∗(r − 1)(r − 3)∗...aN+1..., t

′ = a1 . . . ak−1(ak +
1)00...a′N+1... if k is even and ak = 0, 0?, r − 2, (2n− 1), (2n− 1)∗, n = 1, ..., a− 2. Using
what was done before we have to consider the following:

(a) f(t) = b1...bk−1(r−1)(r−1)0(r−1)0...bN+1... and f(t′) = b1...bk−1(r−2)0(r−1)0(r−
1)...b′N+1..., ak = 0, 0∗. Then

|f(t)− f(t′)| = |gb1 ◦ gb2 ◦ ... ◦ gbk−1
◦ gr−1(z1)− gb1 ◦ gb2 ◦ ... ◦ gbk−1

◦ gr−2(z2)| ≤
≤ |α|2(k−1)|gr−1(z1)− gr−2(z2)|.

As gr−2(u) = gr−1(v) then

|f(t)− f(t′)| ≤ |α|2(k−1) (|gr−1(z1)− gr−1(v)|+ |gr−2(z2)− gr−2(u)|) ≤
≤ |α|2(k−1)(|α|2 + |α|3)diam(Rα−1) = |α|2k(1 + |α|)diam(Rα−1).

(b) f(t) = b1...bk−1(r−2n)(r−1)0(r−1)0...bN+1... and f(t′) = b1...bk−1(r−2n−1)2(r−
1)0(r − 1)0...b′N+1... , ak = 2n− 1, (2n− 1)∗, n = 1, ..., a− 2.

(c) f(t) = b1...bk−11(r−1)0(r−1)0...bN+1... and f(t′) = b1...bk−102(r−1)0(r−1)0...b′N+1...,
ak = r − 2.

• t = a1 . . . ak−1ak(r−1)(r−3)∗(r−1)(r−3)∗...aN+1..., t
′ = a1 . . . ak−1(ak+1)00...a′N+1...

if k is odd and ak = r − 2, (2n− 1), (2n− 1)∗, n = 1, ..., a− 2.
• t = a1 . . . ak−1ak(r − 3)∗(r − 3)∗(r − 1)(r − 3)∗(r − 1)...aN+1..., t

′ = a1 . . . ak−1(ak +
1)00...a′N+1... if k is odd and ak = 0, 0?, r − 3, (2n), (2n)∗, n = 1, ..., a− 3.
• t = a1 . . . ak−1ak(r−3)∗(r−1)(r−3)∗(r−1)...aN+1..., t

′ = a1 . . . ak−1(ak+1)00...a′N+1...
if k is even and ak = r − 3, (2n), (2n)∗, n = 1, ..., a− 3.
For these item the proof is similar. In all that cases we conclude that f is a continuous
function. �

Theorem 2.8. The boundary of Ra, ∀a > 2 is homeomorphic to S1.
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