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Effective elastic properties of alumina-zirconia composite
ceramics by a 2D computational homogenization procedure
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Abstract. Composites have applications in many industrial segments, where different materials are
combined to obtain improved mechanical properties. Thus, the determination of the macroscopic
constitutive behavior of composites with accuracy is important to provide the desired properties. In
this context, the present work explores a 2D computational homogenization procedure to compute
the effective elastic properties of alumina-zirconia composite ceramics. The average-based homoge-
nization theory is used to obtain the homogenized or effective constitutive behavior. The composite
is modeled by the concept of Representative Volume Element (RVE), which is numerically simulated
with finite elements. Simulations are performed considering the uniform and periodic boundary
conditions. The computationally homogenized results for the elasticity modulus are close to the
experimental results compared. The boundary condition has a significant influence in the case of
the shear modulus. Furthermore, the computational homogenization framework is an interesting
tool for designing composites with specific properties.
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1 Introduction
Alumina-zirconia (AZ) composites have a wide range of applications [1–3]. This composite

material combines the high hardness of alumina and the excellent fracture resistance of zirconia
[1]. Furthermore, its widespread use is due to a combination of good strength, moderate fracture
toughness, high wear resistance, good biocompatibility and excellent corrosion resistance [3]. In
this context, alumina-zirconia composites are attractive structural materials [3, 4]. On the other
hand, obtaining the desired macroscopic properties of a composite requires a sufficiently precise
knowledge of its effective constitutive behavior.

The effective elastic properties can be of particular interest in many applications. In this sense,
different strategies were developed to estimate the effective or macroscopic constitutive behavior of
composites. The rule of mixtures proposed by Voigt (upper bound) and Reuss (lower bound) are
well-known models for estimating effective properties [5, 6]. Another well-known estimates are the
Hashin–Shtrikman bounds considering the use of minimum potential energy and minimum com-
plementary energy principles [7]. Over time, other strategies have also been explored to estimate
effective properties more accurately.

In particular, computational homogenization strategies have been used successfully to pre-
dict the effective constitutive behavior of heterogeneous media. For example, some recent works
presented computational homogenization tools to study the effective constitutive behavior of com-
posites and porous media using the ABAQUS® software [8, 9]. In this context, the present work
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explores a two-dimensional computational homogenization procedure to compute the effective elas-
tic properties of alumina-zirconia composite ceramics. The tool for computational homogenization
was implemented in ANSYS® Mechanical, Release 18.0. The composite is modeled with the
concept of RVE formed by a circular zirconia inclusion inserted in the alumina matrix. Two
boundary conditions are imposed on the RVE: (i) homogeneous strain boundary condition; (ii)
periodic boundary condition. The effective elastic properties by computational homogenization
are compared with experimental data and the theoretical formulation proposed in the literature
[10]. Finally, approximate closed expressions are obtained to estimate the elastic parameters based
on the volume fraction of zirconia inclusion.

2 Basic concepts of the average-based homogenization theory
In the context of average-based homogenization theory, the macroscopic strain (E) and stress

(Σ) tensors can be obtained based on the volume averaging of the microscopic strain (ε) and stress
(Σ) tensors over a RVE [11]:

E =< ε >=
1

V

∫
V

εdV (1)

Σ =< σ >=
1

V

∫
V

σdV (2)

where < · > indicates the volume average of the microscopic fields over the RVE; and V is the
total initial volume of the RVE.

The Hill and Mandel principle [11, 12] allows the association of macro-micro scales by energy
equivalence :

Σ : E =
1

V

∫
V

σ : εdV =< σ : ε > (3)

The homogenized stress and strain tensors (Σ and E) can be correlated through the constitutive
law. One option is to use Hooke’s Law considering the effective elastic stiffness tensor (Cef ):

Σ = Cef : E (4)

In addition, another option is to use Hooke’s Law considering the effective elastic flexibility
tensor (Def ):

E = Def : Σ (5)

where Def = (Cef )
−1.

The macroscopic constitutive behavior requires the solution of a Boundary Value Problem
(BVP) for the RVE. In this sense, two well-known boundary conditions in the literature are: (i)
uniform strain boundary condition (USBC); and (ii) the periodic boundary condition (PBC).

The uniform strain boundary condition (USBC) is given by:

u = E∗ · x ∀ x ∈ ∂V (6)

where E∗ is the macroscopic homogeneous strain tensor imposed on the RVE boundary; u is the
displacement field; and x is the position vector. In this case, after some deductions, we can prove
that E =< ε >= E∗.

The periodic boundary condition (PBC) is given by:

u = E∗ · x+ ũ ∀ x ∈ ∂V (7)

where ũ is called periodic fluctuation. After some deductions, we can also prove that E =< ε >=
E∗. Moreover, note that < ũi,j >= 0 when volume averaging process is performed over the RVE.
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3 Effective properties by a 2D computational homogeniza-
tion procedure

In this work, a 2D computational homogenization procedure is explored to determine the ef-
fective elastic properties of alumina-zirconia composite ceramics. Initially, the material properties
and RVE mesh must be defined. Afterward, the Boundary Value Problem is solved with numerical
simulations by the Finite Element Method. Finally, the macroscopic fields are obtained based
on the volume averaging of the microscopic fields computed with finite element simulations. In
this context, the main data to simulate the composite as well as the details of the computational
homogenization procedure are presented below.

3.1 RVEs: elastic properties and meshes

The effective elastic properties of alumina-zirconia composite ceramics (AZ composites) are
investigated in this work. The properties of the constituents were adopted from the theoreti-
cal/experimental study presented by Pabst et al. [10]. Table 1 presents the values for the elasticity
modulus (Y ), the shear modulus (G) and the compressibility modulus (K). It is worth mentioning
that the Poisson coefficients of each constituent material can be obtained by conventional linear
elasticity relationships based on known elastic parameters. Thus, the Poisson coefficients for matrix
and inclusion are νm = 0.23 and νi = 0.31, respectively.

Table 1: Properties of constituents [7].
Material Y (GPa) G (GPa) K (GPa)

Alumina matrix 400± 2% 163± 1% 247± 1%
Zirconia inclusion 210± 4% 80± 2% 184± 2%

The effective elastic properties were obtained for the following inclusion volume fractions (f):
0.05; 0.1; 0.2; 0.3; 0.4; 0.5 and 0.6. The mesh for each case is shown in Figure 1. The 6-node
triangular element was used in the numerical simulations with the FEM.

f = 0.05 f = 0.1 f = 0.2 

3484 elements 3754 elements 3518 elements 

f = 0.3 f = 0.4 f = 0.5 

3606 elements 3636 elements 3672 elements 

f = 0.6 

3606 elements 

Figure 1: Meshes for seven values of inclusion volume fraction (f).

3.2 Computational homogenization procedure

The computational homogenization framework was implemented in ANSYS® Mechanical, Re-
lease 18.0. After numerical simulations with finite elements considering USBC or PBC, the ho-
mogenized stress tensor (Σ) can be computationally obtained by the following expression:

Σ =< σ >=
1

V

Nelem∑
i=1

σiVi (8)
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where Nelem is the number of finite elements; σi is the average stress in the element i computed
from the integration points; Vi is the element volume i; and V is the total initial volume of the
RVE. Furthermore, the homogenized strain tensor is given by the macroscopic homogeneous strain
tensor imposed on the RVE boundary (E = E∗).

The results are obtained from two-dimensional analysis. Considering the components of the
two-dimensional case and the symmetry of the stress and strain tensors, the constitutive law can
be written in a simplified way as:

 Σ11

Σ22

Σ12

 =

 C1111 C1122 C1112

C1122 C2222 C2212

C1112 C2212 C1212

 E11

E22

2E12

 (9)

The effective components of Cef are determined from the homogenized fields of Σ and E.
Thus, values of E∗ must be conveniently imposed to obtain the components of Cef . In this case,
we performed the following analyses considering normal and shear acroscopic strains: (i) E∗

11 = 1.0;
(ii) E∗

22 = 1.0; and (iii) (i) 2E∗
12 = 1.0. Finally, the homogenized elastic properties (Yef , Gef and

νef ) can be determined from Cef .

4 Results and discussion

The effective elastic properties are shown in Figure 2. The results are compared with experi-
mental data and the theoretical formulation extracted from Pabst et al. [10]. Moreover, the upper
bound of Voigt (or iso-strain assumption) and the lower bound of Reuss (or iso-stress assumption)
are also presented for Yef and Gef . It should be noted that it is not suitable to calculate the
Poisson’s ratio under the iso-strain and iso-stress assumptions. Thus, the results for the the rule
of mixtures[5, 6] are not shown for νef .

The results of Yef by computational homogenization are in good agreement with experimental
data and the theoretical formulation extracted from Pabst et al. [10]. In addition, the computa-
tionally homogenized results are between upper and lower limits of Voigt and Reuss, respectively.
In this case, the boundary condition has no significant influence on the homogenized results. It
is worth mentioning that the distribution of microscopic fields is important to understand the
macroscopic or effective results. The distributions of microscopic normal stress are close for USBC
and PBC. Therefore, the effective results of the modulus of elasticity are close for both boundary
conditions.

In the case of Gef , only the effective responses with USBC are close to the theoretical formula-
tion proposed by Pabst et al. [10]. On the other hand, effective results with PBC clearly represent
a lower bound when compared to USBC. Therefore, the boundary condition has a significant influ-
ence on the macroscopic results. This difference in the effective shear modulus is correlated with
the distribution of microscopic fields. As shown in Figure 3, the distribution of microscopic shear
stresses with USBC has strong differences when compared to PBC. Finally, the results considering
νef are close for both USBC and PBC. Furthermore, there are differences between the computa-
tionally homogenized results and the theoretical formulation proposed by Pabst et al. [10]. Despite
these visible differences, the results compared are in good agreement.
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Figure 2: Effective elastic properties.
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Figure 3: Microscopic shear stresses σ12 for the RVE with f = 0.3 under 2E∗
12 = 1.0: (a) USBC; (b) PBC.

Figure 4 shows closed approximate expressions to estimate the effective elastic properties as a
function of f (inclusion volume fraction). Note that polynomial expressions were used to approx-
imate the results for USBC and PBC. The value of R2 ≈ 1 indicates a good agreement between
the approximate expressions and the numerical results.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 9, n. 1, 2022.

DOI: 10.5540/03.2022.009.01.0248 010248-5 © 2022 SBMAC

http://dx.doi.org/10.5540/03.2022.009.01.0248


6

Yef = 70.522f2 - 249.021f + 398.540 

R² = 1.000 

250

270

290

310

330

350

370

390

410

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Y
ef

 (
G

P
a

) 

f 

USBC Adjustment

Yef = 68.631f2 - 248.798f + 398.437 

R² = 1.000 

250

270

290

310

330

350

370

390

410

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Y
ef

 (
G

P
a

) 

f 

PBC Adjustment

Gef = 38.746f2 - 115.716f + 162.058 

R² = 1.000 

100

110

120

130

140

150

160

0 0.2 0.4 0.6

G
ef

 (
G

P
a

) 

f 

USBC Adjustment

Gef = 53.749f2 - 134.100f+ 162.965 

R² = 1.000 

100

110

120

130

140

150

160

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

G
ef

 (
G

P
a

) 

f 

PBC Adjustment

ν = 0.101f3 - 0.096f2 + 0.091f + 0.231 

R² = 1.000 

0.20

0.22

0.24

0.26

0.28

0.30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

ν
ef

 

f 

USBC Adjustment

ν = 0.141f3 - 0.140f2 + 0.101f + 0.230 

R² = 1.000 

0.20

0.22

0.24

0.26

0.28

0.30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

ν
ef

 

f 

PBC Adjustment

Figure 4: Approximate functions for Yef , Gef and νef considering USBC and PBC.

The approximate expressions considering USBC are:

Yef = 70.522f2 − 249.021f + 398.540 (10)

Gef = 38.746f2 − 115.716f + 162.058 (11)

νef = 0.101f3 − 0.096f2 + 0.091f + 0.231 (12)

The approximate expressions considering PBC are:

Yef = 68.631f2 − 248.798f + 398.437 (13)

Gef = 53.749f2 − 134.100f + 162.965 (14)

νef = 0.141f3 − 0.140f2 + 0.101f + 0.230 (15)
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5 Conclusions
In this work, a 2D computational homogenization procedure was explored to obtain the effec-

tive elastic properties of alumina-zirconia composite ceramics. In general, the numerical responses
showed good agreement with the compared reference results. The results of the effective properties
from USBC and PBC are close for the modulus of elasticity and Poisson’s coefficient. In the case
of the shear modulus, only the effective responses with USBC are close to the compared reference
result. Thus, the boundary condition has a significant influence on the shear modulus, where USBC
provides an upper limit when compared to PBC. It is worth mentioning that closed approximate
expressions were also proposed to estimate the effective elastic properties based on the inclusion vol-
ume fraction. Furthermore, this computational approach allows modeling changes in morphology,
elastic properties and volume fractions of the constituents. Therefore, the computational homog-
enization procedure explored in this work can be an interesting tool in the development/design of
heterogeneous materials with improved mechanical properties.
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