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Abstract. This article proposes an approach to resolve the partial eigenvalue assignment output
feedback control problem for second-order damped vibration systems. The matrices are prescribed
in advance and highly depend on controllability conditions, and the system’s observability eigenval-
ues are assigned. In addition, the real value spectral decomposition P (λ) is exploited to establish
conditions so that the feedback gain matrices do not spill over eigenvalue assignment. Thus, the
numerical method presented applies to the active vibration control design of multiple inputs and
outputs of functional engineering structures. However, it should be noted that the proposed al-
gorithm can present complex computational problems if the mass matrix of the system is almost
singular, as it involves the inverse calculation of the mass matrix. Two theorems were presented
using Sylvester equations. Three algorithms were implemented based on the Sylvester equation,
and examples were presented with their conclusions.
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1 Introduction

Second-order linear systems capture the dynamic behavior of many natural phenomena have
therefore found applications in vibration and structural analysis. Second-order linear systems have
found applications in fields such as spacecraft control and robotic control. Therefore, they have
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attracted a lot of attention, in [1], [2], [3], [4], [5]. In [8] he presented an impulse elimination
approach for partial assignment of eigenvalues to the descriptor system with the condition of
S−controllability. In [7] presented an approach for assigning partial eigenvalues in second-order
singular systems via proportional controller, derived control, and output feedback controller.

A solution of the generalized Sylvester equation is linked to a linear singular system subjected to
any restriction on poles classification and regional placement. The problem of partially eigenvalue
allocation for amortization vibrancy in the second-order system by static output feedback in [9].
In this note, it is considered that the controller follows a second-order singular linear system:

M0ẍ+D0ẋ+N0x = Bu (1)
y0 = C0x

y1 = C1ẋ

y2 = C2ẍ

where x ∈ Rn and u ∈Rm are the state vector and the control vector, respectively, and
M0, D0, N0 ∈ Rn×n, and B ∈ Rn×m, C0, C1, C2 ∈ Rp×n are the system coefficient matrices. In
particular demand, the matrices M0, D0, and N0 being denominated the mass matrix, the struc-
tural damping matrix and the stiffness matrix, respectively. The coefficient matrix satisfies the
follow assumption. A1: rank(M) = q, 0 < q ≤ n, rank(B) = m, and rank(C0) = rank(C1) =
rank(C2) = p.

As for the control of the second-order linear system (1), more of the results are focus on stabi-
lization), pole assignment [3], [4], and partial pole assignment, [5]. In addition, several theoretical
results for second-order systems are progressed over the convenient enlarged first-order singular
state-space model. The system (1), is expressed in the form:

Edż = Adz +Bdu (2)

with

Ed =

[
In 0
0 M0

]
; Ad =

[
0 I

−N0 −D0

]
Bd =

[
0
B

]
(3)

ż =

[
ẋ
ẍ

]
and z =

[
x
ẋ

]
Therefore, these results eventually involve manipulations on 2n dimensional matrices Ed, Ad

and Bd.
The remaining of the paper is organized in the following Sections: Section 2 in presented

problem formulation. Section 3 is presented Eigenstructure by Sylvester equation . Section 4 is
presented Numerical Algorithm of Partial Eigenvalue Assignment by SOF ( Static Output Feed-
back). Section 5 is presented Numerical Examples. Finally, Section 6 concludes the paper.

2 Problem formulation
For the second-order descriptor dynamical system (1), by choosing the following control law:

u(t) = −K0y0(t)−K1y1(t)−K2y2(t) (4)

with K0,K1,K2 ∈ Rp×n. It obtains the closed-loop system as follows:

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 9, n. 1, 2022.

DOI: 10.5540/03.2022.009.01.0234 010234-2 © 2022 SBMAC

http://dx.doi.org/10.5540/03.2022.009.01.0234


3

(M0 +BK2C2)ẍ+ (D0 +BK1C1)ẋ+ (N0 +BK0C0)x = 0 (5)

System (5) can be written in the first-order state-space form

Ecż = Acz; (6)

with

Ec =

[
In 0
0 (M0 +BK2C2)

]
and

Ac =

[
0 I

−(N0 +BK0C0) −(D0 +BK1C1)

]
System (1) gives rise to the quadratic eigenvalue problem of the open-loop vibration system

with solving the eigenvalues λf and the associated eigenvectors xf ̸= 0, which satisfy

P (λf )xf = 0 f = 1, 2, · · · 2n (7)

where

P (λ) = λ2M0 + λD0 +N0 (8)

By definition in [9],

µ2
i (M0 +BK2C2)yi + µi(D0 +BK1C1)yi +

(N0 +BK0C0)yi = 0, i = 1, 2, · · · , p. (9)

In general, the open-loop 2n eigenvalues are also called the open-loop poles of system (1). Corre-
spondingly, the system (5) leads to the closed-loop quadratic eigenvalue problem.

P (λ)y = (λ2(M0 +BK2C2) + (D0 +BK1C1)λ+ (N0 +BK0C0))y = 0 (10)

3 Eigenstructure by Sylvester equation
The system (5) can be written in the first-order state-space form (6) and (7). Thus, for obtaining

the output feedback matrix F σ(Ep, Ap +BpFCp) ∈ C−, is used the Sylvester equation in [6].
Consider the following linear time-invariant descriptor system in [6].

Epẋ(t) = Apx(t) +Bpu(t) (11)
y(t) = Cpx(t)

The Sylvester equations in [6].

ApVp − EpVpHV = −BpWp, σ(HV ) ∈ C−. (12)
PpAp −HPPpEp = −UpCd, σ(HP ) ∈ C−. (13)

PpEpVp = 0 (14)

The theorem 3.1 is based in[6], [9].
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Theorem 3.1. Let (1), be S-controllable, and Vp ∈ Rn×p and Wp ∈ Rm×p satisfy the equation
(12). Then, the following hold.

1) The matrices Vp and Wp given by (12),

[
Ap − λiEp Bp

PpEp 0

] [
vi
wi

]
= 0 i = 1, 2, · · · , q. (15)

satisfy Sylvester matrix equation (12) for, i = 1, 2, · · · , q,
2) When

rank(

[
Vi

Wi

]
) = m i = 1, 2, · · · , q. (16)

hold, (14) gives all the solutions.

Proof. Based in [6].

4 Numerical Algorithm of Partial Eigenvalue Assignment by
SOF

4.1 A sufficient condition and the associated matrix equation
For the acceleration, velocity and displacement output feedback, substituting ∆N = BK0C0;

∆D = BK1C1, ∆M = BK2C2 in [9] is obtained

[
K0 K1 K2

]  C0

C1

C2

 = 0 (17)

The matrices K0,K1,K2 are obtain from the homogeneous matrix equation (17) in [9]. The coeffi-
cient matrix of (17) in [9] involves only those few eigenvalues and the corresponding eigenvectors to
be assigned and the analytical matrices of the system (1), and is a real matrix. Let rank(A) = q,
then the matrix equation 17 in [9] has non-trivial solutions.

4.2 Numerical algorithm
We first present an approach to the general solutions of (17) in [9] for K0,K1,K2. It is to

determine the left null space of the coefficient matrix A using the singular value decomposition.
Let Q denote the matrix that its rows are comprised of orthonormal basis vectors of the null space,
and it is has

[K0,K1,K2] = V Q (18)

where the parametric matrix V is to be determined below. Secondly, K0,K1,K2 must also imple-
ment some given eigenvalues assignment. The projection is characterized by the parametric vector
µi where

µi = (ΓT (λi)(λi))
−1ΓT (λi)xi (19)

yi = Γ(λi)µi (20)
wi = Φ(λi)µi (21)
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V (N [CY ]) = W (22)

Equation (22) is of the form ZE = S, where S and E are given matrices of appropriate dimensions,
and the matrix Z needs to be determined. The necessary and sufficient condition for the existence
of solutions on this type of matrix equation is SE+E = S where the superscript + denotes the
Moore-Penrose inverse of a matrix, and it is obtained the minimal S-norm solution

V = W (N [CY ])+ (23)

Substituting the obtained V back into (18), then output feedback gain matrices K0,K1,K2 are
eventually determined, in the closed-loop quadratic pencil P (λ) of (8). When M0 is nonsingular,
this requirement guarantees that no impulses occur in the closed-loop system owing to infinite
eigenvalues. It naturally involves with the problem of finding the distance of M0 to the near-
est singular matrix. The matrices K0,K1 and K2 must also implement some given eigenvalues
assignment. The theorem 4.1 is based in [6], [9].

Theorem 4.1. Let (1), be S-controllable, and Vp ∈ R2n×p and Wp ∈ Rm×p satisfy the equation
(12). Then, the following hold.

1) The matrices Vp and Wp given by (12),

[
Ap − λiEp Bp

] [ vi
wi

]
= 0 i = 1, 2, · · · , q. (24)

satisfy Sylvester matrix equation (12) for, i = 1, 2, · · · , q,
2) When

rank(

[
Vi

Wi

]
) = m i = 1, 2, · · · , q. (25)

3) K2,K1,K0 is such that it satisfies

(M0 +BpK2C2)q̈(t) + (D0 +BpK1C1)q̇(t) +

(N0 +BpK0C0)q(t) = 0 (26)

Proof. Based in [6], [7], [8], [9].

Algorithm basic Z1 Input: M0, D0, N0, Bp, C0, C1, C2 Output: K0,K1,K2

Step (1) Compute S1 and the left null space Q of the coefficient matrix in Equation (18).
Step (2) Compute yi, wi, i = 1, 2, · · · , p by Equations (24), (25), (20) to form Y and W .
Step(3) Solve Equation (22) for V with Equation (23) after checking the existence of the

solution.
Step (4) Substitute V back into Equation (18) to give K0,K1,K2.

5 Numerical Examples
To demonstrate the performance of the present approach, two numerical examples are analyzed

in this section. All codes are run in MATLAB with machine precision 10−16 on a personal computer.
Consider a simple linear dynamical system (1) with M0, D0, N0, B,C0, C1, C2 in [9].
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Algorithm basic Z1 Input: M0, D0, N0, B, C0, C1, C2 Output: K0,K1,K2

Step (1) Compute S1 and the left null space Q of the coefficient matrix in Equation (18).
Step (2) Compute yi, wi, i = 1, 2, · · · , p by Equations (24), (25), (20) to form Y and W .
Step(3) Solve Equation (22) for V with Equation (23) after checking the existence of the

solution.
Step (4) Substitute V back into Equation (18) with (21) to give K0,K1,K2 and the matrix

K0, K1,K2 such that K2C2V2 = W2, K1C1V1 = W1, and K0C0V0 = W0,

V0 =


0.0521304 0.0439039 0.0383248 0.0348497
−0.076474 −0.0719608 −0.0708508 −0.0726528
0.0070045 0.0070247 0.0066577 0.0061644
0.0043382 0.0040844 0.0037361 0.0028785
0.0017522 0.0004953 −0.0002459 −0.0006246
0.0074559 0.008552 0.0083765 0.0071757



W0 =


−0.3242153 −0.2210717 −0.2005616 −0.273146
−1.1272841 −1.1120762 −1.1044034 −1.092142
0.3896079 0.3995321 0.4373715 0.4820908
0.6208033 0.6569759 0.6137823 0.5062952


K0 =


−6.1606949 5.4435459 −14.456099 53.214836
4.1704143 13.62053 −4.0775774 −31.944519
−9.9164149 −12.267784 −18.247316 33.716473
3.875054 3.1614239 31.649585 12.754786


where the eigenvalues are λ1 = −1, λ2 = −2, λ3 = −3, λ4 = −4, λ5 = −5, λ6 = −6, λ7 = −37.149593,

λ8 = −4.649849, λ9 = −0.9921309 + 3.8887332j λ10 = −0.9921309 − 3.8887332j λ11 = −0.4872684 + 0.2499814j,
λ12 = −0.4872684− 0.2499814j.

V1 =


0.0446926 0.0374525 −0.0291067 −0.0236673
−0.0783949 −0.0746852 0.0726337 0.0678909
0.0038137 0.0046988 −0.0012483 −0.0011304
0.0060943 0.0051477 −0.00533 −0.0026561
0.0018332 0.000595 −0.0000931 0.0001565
0.0069051 0.0089582 0.0038211 0.0050015



W1 =


0.5059455 −0.4979435 0.7124262 0.8776696
−1.1048955 −1.0545573 0.8970177 0.7237905
0.3395982 0.2477809 −0.6899967 −0.6205126
0.5704727 0.6765353 0.2266264 0.3581733


K1 =


5.914908319.21919963.56123381.056327

−1.85692637.5686617− 39.087756− 45.860668
−11.322169− 13.724264− 107.3790129.407447

17.77522416.570007230.3076732.279694

 where the eigenvalues are λ1 = −1, λ2 = −2,

λ3 = −3, λ4 = −4, λ5 = −5, λ6 = −6, λ7 = −38.653889, λ8 = −3.695664, λ9 = −2.8420891 + .6086082j

λ10 = −2.8420891− .6086082j.

V2 =


0.0488385 0.0403992 −0.025387 −0.0181925
−0.0797826 −0.0784526 0.0687017 0.0611566
0.0038728 0.0040052 −0.0006003 −0.0004777
0.0056806 0.005733 −0.0052843 −0.0023258
0.0017419 0.000654 −0.0001266 0.0000899
0.0066251 0.0062879 0.0053903 0.0062784

 ;

W2 =


−0.440617 −0.4841541 0.777753 0.9964393
−1.1356319 −1.1110555 0.8038804 0.5579771
0.3574743 0.3837874 −0.7035365 −0.5846476
0.5476882 0.4999696 0.3360751 0.449065


K2 =


7.7654659 19.487249 1.609387 96.48342
−3.4471017 5.1972494 −58.282258 −59.589812
−4.6306656 −8.6625354 −57.413782 35.723326
9.2594212 10.475041 163.1129 29.705745

 where the eigenvalues are

λ1 = −1, λ2 = −2, λ3 = −3, λ4 = −4, λ5 = −5, λ6 = −6,
λ1 = −3, λ2 = −4, λ3 = −22.229984, λ4 = −0.509633, λ5 = −1.5034249, λ6 = −5.2611072,

λ7 = −4.1601947, λ8 = −40.283544, λ9 = −1.2514216 + 5.4279253j. λ10 = −1.2514216 −
5.4279253j.
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6 Conclusions
This article proposes an approach to resolve the partial eigenvalue assignment output feedback

control problem for second-order damped vibration systems. So the matrices are simply prescribed
in advance and highly dependent on the conditions of controllability and observability of the
system where the eigenvalues are assigned. In addition, the real value spectral decomposition P (λ)
is exploited to establish conditions so that the feedback gain matrices do not spill over eigenvalue
assignment. The numerical method presented applies to the active vibration control design of
multiple inputs and outputs of practical engineering structures.
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