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Abstract. Second-order systems are those whose models can be written by a second-order differen-
tial equation. That is, they are those that have two poles. The present article proposes an approach
to solve the output feedback control with eigenvalues for second-order systems using Sylvester equa-
tions. The matrices are prescribed in advance and depend greatly on the controllability conditions,
being assigned the system’s observability eigenvalues. Furthermore, the real-value spectral decom-
position T (λ) is explored to establish conditions so that the feedback gain matrices do not overflow
over the eigenvalue assignment. However, it should be noted that the proposed algorithms may
present complex computational problems. Two theorems were presented using Sylvester equations.
The algorithms were implemented based on Sylvester equations, and examples were presented with
their conclusions.

Keywords. Sylvester equations, Eigenvalue assignment, Output feedback control, Second order
system.

1 Introduction
Second-order linear systems capture the dynamic behavior of many natural phenomena, and

have found applications in many fields, such as vibration and structural analysis, spacecraft control
and robotics control and, hence, have attracted much attention [3]. In [6] presented impulse elim-
ination approach to partial eigenvalue assignment for the descriptor system with the condition of
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S−controllability. In [5] presented an approach for partial eigenvalue assignment in singular second
order systems via proportional controller plus derived control plus output feedback controller.

The problem of partially eigenvalue allocation for amortization vibrancy in the second-order
system by static output feedback in [8]. In this note, it is considered that the controller follows a
second-order singular linear system:

P0ẍ+Q0ẋ+R0x = Bu (1)
y0 = C0x

y1 = C1ẋ

y2 = C2ẍ

where x ∈ Rn and u ∈ Rm are the state vector and the control vector, respectively, and P0, Q0, R0 ∈
Rn×n, and B ∈ Rn×m, C0, C1, C2 ∈ Rp×n are the system coefficient matrices. In particular demand,
the matrices P0, Q0, and R0 being denominated the mass matrix, the structural damping matrix
and the stiffness matrix, respectively. As for the control of the second-order linear system (1), more
of the results are focus on stabilization), pole assignment [1], [2], and partial pole assignment, [3].
The system (1), is expressed in the form:

Ef ż = Afz +Bfu (2)

with

Ef =

[
In 0
0 P0

]
; Af =

[
0 I

−R0 −Q0

]
Bf =

[
0
B

]
(3)

ż =

[
ẋ
ẍ

]
and z =

[
x
ẋ

]
Therefore, these results eventually involve manipulations on 2n dimensional matrices Ef , Af

and Bf .
The remaining of the paper is organized in the following Sections: Section 2 in presented

problem formulation. Section 3 is presented Eigenstructure by Sylvester equation. Section 4 is
presented Numerical Algorithm of Eigenvalue Assignment by SOF ( Static Output Feedback) and
numerical Examples. Finally, Section 5 concludes the paper.

2 Problem formulation
For the second-order descriptor dynamical system (1), by choosing the following control law:

u(t) = −L0y0(t)− L1y1(t)− L2y2(t) (4)

with L0, L1, L2 ∈ Rp×n. It obtains the closed-loop system as follows:

(P0 +BL2C2)ẍ+ (Q0 +BL1C1)ẋ+ (R0 +BL0C0)x = 0 (5)

System (5) can be written in the first-order state-space form

Ebż = Abz; (6)
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with

Eb =

[
In 0
0 (P0 +BL2C2)

]
and

Ab =

[
0 I

−(R0 +BL0C0) −(Q0 +BL1C1)

]
System (1) gives rise to the quadratic eigenvalue problem of the open-loop vibration system

with solving the eigenvalues λk and the associated eigenvectors xk ̸= 0, which satisfy

T (λk)xk = 0 k = 1, 2, · · · 2n (7)

where

T (λ) = λ2P0 + λQ0 +R0 (8)

By definition in [8],

µ2
i (P0 +BL2C2)yi + µi(Q0 +BL1C1)yi +

(R0 +BL0C0)yi = 0, i = 1, 2, · · · , p. (9)

In general, the open-loop 2n eigenvalues are also called the open-loop poles of system (1). Corre-
spondingly, the system (5) leads to the closed-loop quadratic eigenvalue problem.

T (λ)y = (λ2(P0 +BL2C2) + (Q0 +BL1C1)λ+ (R0 +BL0C0))y = 0 (10)

3 Eigenstructure by Sylvester equation
The system (5) can be written in the first-order state-space form (6) and (7). Thus, for obtaining

the output feedback matrix K σ(Es, As +BsKCs) ∈ C−, is used the Sylvester equation in [4].
Consider the following linear time-invariant descriptor system in [4].

Esẋ(t) = Asx(t) +Bsu(t) (11)
y(t) = Csx(t)

The Sylvester equations in [4].

AsVs − EsVsHV = −BsWs, σ(HV ) ∈ C− (12)
TsAs −HTTsEs = −UsCs, σ(HT ) ∈ C− (13)

TsEsVs = 0 (14)

The theorem 3.1 is based in [4], [8].

Theorem 3.1. Let (1), be S-controllable, and Vs ∈ Rn×p and Ws ∈ Rm×p satisfy the equation
(12). Then, the following hold.

1) The matrices Vs and Ws given by (12),

[
As − λiEs Bs

TsEs 0

] [
vi
wi

]
= 0 i = 1, 2, · · · , q. (15)
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satisfy Sylvester matrix equation (12) for, i = 1, 2, · · · , q,
2) When

rank(

[
Vi

Wi

]
) = m i = 1, 2, · · · , q. (16)

hold, (14) gives all the solutions.

Proof. Based in [4].

Theorem 3.2. Let Es, As ∈ Rn×n, Bs ∈ Rn×m , HV ∈ Rp×p satisfy

rank[As − λEs Bs] = n, for any λ ∈ σ(HV ). (17)

Further, let H ∈ R(n+m)×m[λ] be a polynomial matrix satisfying [As − λEs Bs]H(λ) = 0n×m.
Then:
(1) The matrices Vs ∈ Rn×p and Ws ∈ Rm×p given by[

Vs

Ws

]
= Syl(H(λ), HV , Z) (18)

satisfy the matrix equation (12) for any matrix Z ∈ Rm×p. (2) When rankH(λ) = r for any
λ ∈ σ(HV ), all the matrices Vs and Ws satisfying the matrix equation (12) can be explicitly
expressed by (18).

Proof. Based in [4] and [7].

4 Numerical Algorithm
Let G(λ) and X be defined as

G(λ) = [As − λEs Bs]; X =

[
Vs

Ws

]
The following basic procedure is proposed to calculate the feedback controller that stabilizes

the closed loop system, when m + p > q. Closed loop eigenvalues are positioned arbitrarily close
to the set ; they are symmetric sets of pre-specified eigenvalues. The (Es, As, Bs, Cs) system is
considered to be strongly controllable and strongly detectable.

Algorithm
Step 1: Choose an array HT ∈ Rq−p×q−p such that σ(HT ) = ΛT ∈ C− and Sylvester equation

(13) is solved to find a matrix Ts ∈ Rq−p×n such that

rank

([
TsEs

Cs

])
= q (19)

Step 2: Sylvester equation (12) is solved, for some HV ∈ Rp×p matrix such that σ(HV ) = ΛV ∈ C−

taking into account that the matrix Vs must check the condition of the coupling (14) and taking into
account that rank (EsVs) = p .The condition (19) guarantees, in particular, that rank(TsEs) = q.

Step 3: By construction, the matrix Vs must verify that rank (CsVs) = p and the matrix K
can be calculated by:

K = Ws(CsVs)
−1 (20)

⋄
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Remark 4.1. steps 1 and 2 can be solved using standard techniques for positioning the self-
structure. Similar to the previous case, the matrices Vs and Ws used for the calculation of K can
be constructed only with real elements. In particular: if λi ∈ C−, it is considered λi+1 = λ∗

i e{
Vi = Re (vi), Vi+1 = Imag (vi)
Wi = Re (wi), Wi+1 = Imag (wi)

, where Vi and Wi denote the columns of the matrices Vs

and Ws, respectively.

In step 1, under the condition that the system is strongly observable (detectable). As will
be seen later, degrees of freedom existing in the choice of Vs that satisfy the coupling condition
TsEsVs = 0, can also be used to guarantee obtaining K such that KCsVs = Ws in [4].

4.1 Example

Consider a simple linear dynamical system (1) in [8]

P0 =


1.56 0.66 0.54 −0.39 0 0
0.66 0.36 0.39 −0.27 0 0
0.54 0.39 3.12 0 0.54 −0.39
−0.39 −0.27 0 0.72 0.39 −0.27

0 0 0.54 0.39 3.12 0
0 0 −0.39 −0.27 0 0.72



Q0 =


0.72 1.08 −0.72 1.08 0 0
1.08 2.16 −1.08 1.08 0 0
−0.72 −1.08 1.44 0 −0.72 1.08
1.08 1.08 0 4.32 −1.08 1.08
0 0 −0.72 −1.08 1.44 0
0 0 1.08 1.08 0 4.32



R0 =


12 18 −12 18 0 0
18 36 −18 18 0 0
−12 −18 24 0 −12 18
18 18 0 72 −18 18
0 0 −12 −18 24 0
0 0 18 18 0 72



B =


1 0 0 0
1 1 0 0
0 0 1 1
0 0 0 0
0 0 0 0
0 0 0 1

 ; C0 =


1 0 0 0 0 1
0 1 0 0 0 1
0 0 1 0 0 1
0 0 0 1 0 1

 ;

C1 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

 ; C2 =


1 0 0 0 0 1.
0 1 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0

.

Considered the system in the equations (8), (9)

Ef =

[
In 0
0 M

]
; As =

[
0 In

−R −Q

]
;
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Bf =

[
0
B

]
Cf =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



T

Algorithm basic S1
Resolved the equation (11) for calculate the matrices Ws, Vs, satisfies the equation (14) and

the matrix K, such that KCsVs = Ws:

Ts =



0.0191586 0.0067923
0.002596 −0.0048225

−0.1142892 −0.0984266
0.0291704 0.0464583
−0.1560708 −0.1242605
0.1411607 0.1285409
−0.041492 −0.0123643
0.0355007 0.0117136
0.050413 0.0245556
0.0223914 0.0129728
0.0354971 0.0116523
0.0102292 0.0214763



T

Vs =



0.0521304 0.0439039 0.0383248 0.0348497
−0.076474 −0.0719608 −0.0708508 −0.0726528
0.0070045 0.0070247 0.0066577 0.0061644
0.0043382 0.0040844 0.0037361 0.0028785
0.0017522 0.0004953 −0.0002459 −0.0006246
0.0074559 0.008552 0.0083765 0.0071757
−0.1563912 −0.1756154 −0.1916239 −0.2090984
0.229422 0.2878434 0.3542541 0.435917

−0.0210135 −0.0280988 −0.0332887 −0.0369862
−0.0130146 −0.0163374 −0.0186804 −0.0172712
−0.0052567 −0.0019812 0.0012293 0.0037475
−0.0223678 −0.0342079 −0.0418824 −0.043054


Ws =


−0.3242153 −0.2210717 −0.2005616 −0.273146
−1.1272841 −1.1120762 −1.1044034 −1.092142
0.3896079 0.3995321 0.4373715 0.4820908
0.6208033 0.6569759 0.6137823 0.5062952


K =


−6.1606949 5.4435459 −14.456099 53.214836
4.1704143 13.62053 −4.0775774 −31.944519
−9.9164149 −12.267784 −18.247316 33.716473
3.875054 3.1614239 31.649585 12.754786

 where the eigenvalues are

λ1 = −1, λ2 = −2, λ3 = −3, λ4 = −4, λ5 = −5, λ6 = −6, λ7 = −4.649849, λ8 = −37.149593,
λ9 = −0.9921309 + 3.8887332i, λ10 = −0.9921309 − 3.8887332i, λ11 = −0.4872684 + 0.2499814i,
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λ12 = −0.4872684− 0.2499814i.

5 Conclusions
This article proposes an approach to resolve the eigenvalue assignment output feedback con-

trol problem for second-order systems using the Sylvester equations. So the matrices are simply
prescribed in advance and highly dependent on the conditions of controllability and observability
of the system where the eigenvalues are assigned. The numerical method presented applies to the
active vibration control design of multiple inputs and outputs of practical engineering structures.
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