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On geometric invariants of plane curves
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Abstract. In this paper, we study some geometric invariants of closed plane curves, that can help

us classify these curves. We focus on two invariants: the number of in�ection points and the number

of vertex points. We intend to �nd models of curves with a number of prede�ned double points and

with the smallest possible number of in�ection points and vertex points.
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1 Introduction

Stable applications from surfaces to the plane have been extensively studied (see for example
[1, 5, 8, 11�13]). The image of the singular set of a stable map, from a closed surface M to the
plane, known as the apparent contour, consists of a collection of closed curves, immersed in the
plane, with possibly a �nite number of transverse intersections and singularities. Invariants of
the apparent contour carry substantial information about the surface M . The three well-known
invariants in the study of apparent contour are the number of components of the singular set,
the number of cusps and the number of double points. In [2], Arnold introduced Vassiliev-type
invariants for the isotopic classi�cation of stable closed curves and presented a table with possible
closed, stable curves, immersed in the plane, with a maximum of �ve double points. In [7], the
authors demonstrated that only six curves in the Arnold table in [2] can be the apparent contour
of fold maps (maps with zero cusps) from sphere to the plane. It is notable that, In [2], Arnold
presented a family of plane curves, called basic curves, with the smallest number of double points,
within the class of immersions given by Whitney ([6]). These curves are labelled by Ki for i ≥ 0
and are illustrated in Figure 1. Besides the topological invariants for closed plane curves, one

Figura 1: Arnold basic curves.

can consider geometric concepts of plane curves as well. More precisely, we concern the minimum
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number of in�ection and vertex points of a closed stable plane curve. Recall that, a point p on a
plane curve γ is called an ordinary in�ection if the curvature of γ at p is zero. Also a point q ∈ γ is
called an ordinary vertex if the curvature of γ at q is not zero but the �rst derivative of curvature
at q is zero. There are several works investigating the minimum number of in�ection points of a
Jordan curve. For a Jordan curve (Arnold curve of type K1) there is a well known theorem called
�the 4 vertex theorem". For an Arnold curve of type K2, the minimum number of vertices is 2
(consider the curve r = 1 − 2 sin(θ) in polar coordinates). To the best of our knowledge, there is
no sensible study on the minimum number of in�ection and vertex points of a closed stable plane
curve simultaneously. Thereupon, it is reasonable to ask whether, for a given closed plane curve
γ, it is possible to determine a model curve with minimum number of vertices (denoted by νγ) and
in�ections (denoted by ιγ), which is isotopic to the curve or not. Also, is it possible to determine
the set of plane curves considered as the apparent contour of some stable applications from closed
surfaces to the plane, with the smallest number of vertex and in�ection points?

In [10], the authors studied the local deformations of a family of plane curves, which considers
the geometry of the plane curves (in�ections and vertices) together with their singularities. In
particular, they considered in [10] the codimension 1 transitions of a second order vertex, second
order in�ection and an ordinary cusp as illustrated in Figure 2. This motivated us to use the

(a)

(b)

(c)

Figura 2: Codimension 1 geometric transitions: (a) second order vertex (b) second order in�ection
(c) ordinary cusp. Dots and squares represent ordinary vertex and in�ection points respectively.

results given in [10] to answer the questions mentioned above.

Remark 1.1. It is important to pay attention to the fact that the transitions given in Figure 2
are local in nature while the invariants νγ and ιγ are global invariants of the plane curve γ. To
solve this problem, in [9] we use some arguments similar to one given in [4] for converse of the
four vertex theorem.

Example 1.1. In [3, page 21], P. J. Giblin and J. W. Bruce presented a family of plane curves
(called limaçon) given by

γa(t) = (a cos(t) + cos(2t) + 1, a sin(t) + sin(2t)) .

By changes of the variable a, they calculated the in�ection and vertex points (see Figure 3). These
deformations shows how a curve of type K1 changes to a curve of type K2.
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Figura 3: Deformations of a family of limaçons. Here dots represent vertices and cross-marks
represent in�ections. This Figure is given in [3].

As already mentioned above, the closed plane curves also can be seen as the apparent contour of
stable maps from a closed oriented surfaceM to the plane R2. In [2], Arnold presented a table with
the possible closed, stable curves, immersed in the plane, with a maximum of �ve double points.
In [7], the authors proved that only six curves in the Arnold table in [2] may be the apparent
contour of fold maps (a stable map without cusp points is called fold map) from the sphere to the
plane. These are the curve K1 (ellipse) and some other curves denoted by Dij given in Figure 4.
In following theorems we present the invariants ν and ι for Arnold basic curves and the six curves

Figura 4: Examples of plane curves which can be apparent contours of maps from the sphere to
the plane R2.

given in Figure 4.

Theorem 1.1. For the Arnold basic curves, Ki, we have:

(a) ι(K0) = 4 and ι(Ki) = 0, for i ≥ 1;

(b) ν(K1) = 4, ν(K0) = 2 and 0 < ν(Ki) ≤ 2(i− 1), for i ≥ 2.

Theorem 1.2. For every plane curve γ given in Figure 4, the geometrical invariants νγ and ιγ
are given in Table 1. In this table D denotes the number of self intersections.

Tabela 1: Geometric invariants of apparent counter curves given in Figure 4.

Curve D ι ν
K1 0 0 4
D2 2 2 2
D41 4 2 2
D42 4 4 4
D43 4 6 6
D44 4 4 4

Remark 1.2. We may conjecture that in item (b) of Theorem 1.1, ν(K2) = 2 and consequently
ν(Ki) = 2(i− 1) for every i ≥ 2.
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Example 1.2. The idea of using the codimension 1 geometric transitions given in Figure 2 can
be used to estimate the invariants ν and ι of any plane curve. Figure 5 illustrates an example of
using a D41 curve to estimate the geometric invariants of the plane curve.

Figura 5: An example of plane curve.

2 Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1. We begin with the basic curve K0. In general, the family of such curves is
also known as Lissajous curves. A general parametrization of this family is

γ(t) = (u sin(at+ δ), v sin(bt)) ,

where u, v, a, b and δ are real values. Visually, the ratio a/b determines the number of �lobes"of
the �gure. Therefore, for the Arnold basic curve without loss of generality we may assume that
a = 1 and b = 2. We may abuse notation and denote the numerator of the curvature of γ by

κ(t, δ) = −2uv (2sin(2t) cos(t+ δ)− sin(t+ δ) cos(2t)) .

Since uv 6= 0 so the roots of κ(t, δ) are (t, δ) = (±π2 ,±
π
2 ). This shows that the invariant ι(K0) = 4.

The numerator of the �rst derivative of curvature is

− uv
(
−8 sin(2t) sin(t+ δ) cos(2t)2 − 12 cos(t+ δ) cos(2t)3 + 16 cos(2t) cos(t+ δ)

)
v2

+
(
2 sin(2t) cos(t+ δ)2 sin(t+ δ) + 2 cos(t+ δ)3 cos(2t)− cos(2t) cos(t+ δ)

)
u2

The variables u and v do not a�ect geometry so without loss of generality we can assume u = v = 1.
Putting δ = ±π2 in the above expression and solving it we �nd that the vertex points happen at
t = 0 and t = π. Therefore, ν(K0) = 2.

For the curve K1 it is evident that ι(K1) = 0 and ν(K1) = 4. For the case of basic curves of
type K2, �rstly it is trivial that ι(K2) = 0. Also due to Example 1.1, we have 0 < ν(K2) ≤ 2. For
i ≥ 3 we must pay attention to the fact that the curvature function at the vertex points in lobes
has relative maximum. Thereupon, always between two relative maximum point of the curvature
function there must exist at least one relative minimum. Now by using a same argument as given
in the case K2 and by induction on i, we obtain an upper bound for the invariant ν(Ki), i.e., we
have 0 < ν(Ki) ≤ 2(i− 1).

Proof of Theorem 1.2. The following �gures illustrate �ve sequences of transitions on curves given
in Figure 4. The next explanations describe what happens in each Figure.

(a) Starting by a curve of type K1, the transition of second order in�ection creates two in�ections
and a vertex between them. By passing through an inverse self-tangency, we obtain the curve
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of type D2 with 4 vertices and 2 in�ection points. Now we can perform another transition
to vanish two vertices (Figure 6).

Figura 6: (a): Transition of a curve of type K1 to D2 (ν = 2 and ι = 2).

(b) In Figure 7 by using the item (a), we start by a curve of type D2. Now we permit the curve to
have two direct self-tangencies and obtain a curve of type D41 with 2 vertices and 2 in�ection
points.

Figura 7: (b): Transition of a curve of type D2 to D41 (ν = 2 and ι = 2).

(c) Beginning by a curve of type D2 with 4 vertices and 2 in�ections, using the geometric
transition of second order vertex and then a transition of second order in�ection, we have
the birth of 2 new in�ections and 2 new vertices. Then applying an inverse self-tangency, we
gain a curve of type D42 with 6 vertices and 4 in�ection points. Now the three free vertices
can join and give us a curve with 4 vertices and 4 in�ections (see Figure 8).

Figura 8: (c): Transition of a curve of type D2 to D42 (ν = 4 and ι = 4).

(d) Using the second order vertex transition on a curve of typeD2, we have birth of 2 new vertices.
Then, by performing transition of second order in�ection we create 2 new in�ections with 1
vertex point between them and apply an inverse self-tangency. Therefore, we obtain a curve
of type D43 with 6 vertices and 6 in�ections in total.

Figura 9: (d): Transition of a curve of type D2 to D43 (ν = 6 and ι = 6).
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(e) Finally, like item (c), starting by a curve of type D2 with 4 vertices and 2 in�ections and
applying the transition of a second order vertex and a transition of second order in�ection
successively, we can create 3 new vertices and 2 new in�ections. After performing an inverse
self-tangency, one can obtain a curve of type D44 with 6 vertices and 4 in�ections in total.

Figura 10: (e): Transition of a curve of type D2 to D44 (ν = 4 and ι = 4).

3 Final considerations

Our study is part of an on going project on understanding geometric invariants of maps from
closed surfaces in R3 to the plane. Theorem 1.2 is an essential key in the study of weighted graphs
of these maps.
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