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Abstract. Active suspension systems for the vehicle control problem are formulated using output
feedback. The present article proposes solving the output feedback control with eigenvalues for
active suspension systems using Sylvester equations. The matrices are prescribed in advance and
depend greatly on the controllability conditions, being assigned the system’s observability eigen-
values. The theorems were presented using Sylvester equations. The algorithm was implemented
based on Sylvester equation, and an example was presented with their conclusions.
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1 Introduction
In moving mechanical systems, efforts are always made to reduce the influence of unwanted

vibrations. In the case of automotive vehicles, the system responsible for such action is that of sus-
pension. Not only in terms of comfort, but this system is necessary also for the safety and stability
of the vehicle in maneuvers and when driving on terrains uneven. From the restrictions of projects
with passive suspensions, whose parameters are fixed, and with the progress in technological and
microelectronics development, as well as in the field of new actuators, active damper systems have
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evolved more and more, increasing the efficiency of these equipments and demanding, therefore,
strategies of control of in order to provide an adequate action from the motion sensors. Allied to
that, the development of control systems and its importance in the stability of systems mechanics
(such as active suspension and control of flexible structures) motivate the study of efficient control
techniques [4]. The semi-active system tries to vary the damping coefficient instead of a constant
damping of the passive system. This is the main system that combines simplicity of control and
quality in stabilization. The objective of this work is to develop the modeling of a control system
of a semi-active damping system based on Sylvester’s equations.

The remaining of the paper is organized in the following Sections: Section 2 in presented
problem formulation. Section 4 Semi-active suspension systems is presented. Section 5 is presented
Eigenstructure by Sylvester equation Sylvester. Section 6 is presented Numerical Algorithm of
Eigenvalue Assignment by SOF ( Static Output Feedback) and numerical example. Finally, Section
6 concludes the paper.

2 Problem formulation and control
Vehicle suspension plays a fundamental role concerning the level of passenger comfort. The

mathematical model of a suspension system vehicle representing a quarter of a vehicle is used
by most bibliographies available on the subject. The motion equation for the suspended mass is
described by equation (1), where M2 is the mass of a quarter car, kf is the spring coefficient, ds is
the displacement of M2 and dr is the displacement of the wheel, spring and damper system.

M2d̈s = −kf (ds − dr)−Ba(ḋs − ḋr) (1)

The motion equation for the unsprung mass is described by equation (2), where M1 is the mass of
the system composed of the wheel, spring and damper.

M1d̈r = kf (ds − dr) +Ba(ḋs − ḋr)− kp(dr − dp) (2)

Applying the state space model to Equation (1) and Equation (2), we arrive at the following state
equation:

ż(t) = Apz(t) +Bpu(t) (3)
y(t) = Cz(t)

with

Ap =


0 1 0 0

− kf

M1

−Ba

M1

kf

M1

Ba

M1

0 0 0 1

− kf

M2

Ba

M2

−(kp+kf )
M1

−Ba

M2


Bp =


0
0
0
kp

M2

.

Let the the normal dynamical system (4)

ẋ(t) = Ax(t) +Bu(t) (4)
y(t) = Cx(t)

Therefore, n dimensional matrices A ∈ Rn×n, state space B ∈ Rn×m input matrix and C ∈ Rp×n

output matrix .

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 9, n. 1, 2022.

DOI: 10.5540/03.2022.009.01.0310 010310-2 © 2022 SBMAC

http://dx.doi.org/10.5540/03.2022.009.01.0310


3

For the normal dynamical system (4), by choosing the following control law:

u(t) = −Ly(t) (5)

with L ∈ Rp×n. It obtains the closed-loop system as follows:

ẋ(t) = (A+BLC)x (6)
y(t) = Cx(t)

Modern control is based on differential equations in the form of state space, and introduced
to the control area from the 1960s onwards [1], [3]. Designing a controller for a dynamic system
requires a model that represents the system’s dynamic response. Most systems physics are complex
and non-linear. Generally, the design needs to be based on a simplified but robust version of the
model so that the control meets the performance requirements when applied to the actual device. In
closed-loop control, the system includes a sensor to measure the output signal. The data acquired
by the sensor is feedback to the controller that makes a comparison with the reference; the result of
this comparison is the plant error. The controller sends a control effort signal to act on the process
control variable from the error. A feature of both types of systems is the presence of the actuator.
The actuator is a device that somehow influences the process control variable and receives the
control effort signal directly from the controller in [3].

3 Semi-active suspension system

Active suspension systems the vehicle is described in [2]. Semi-Active Suspension Control
Design for Vehicles is described in [4]. In a Semi-active suspension system, varying the damping
coefficient of the shock absorber or spring constant through electronic control without inputting
external energy to the system, except the device control that changes the damping coefficient or the
elastic constant characterizes a semi-active suspension; mostly of the cases, the damping coefficient
of the dissipative element in the system varies semi-active in [4]. In Figure (1), it is observed the
semi-active suspension model. Where dp, dr and ds represent the vertical displacements of the tire,
wheel, and body, respectively. The spring is represented by its spring constant kf and the damper
by its coefficient Ba, while the constant kp represents the tire elasticity. The masses of the body
and wheel are respectively represented by M1 and M2.

Note that the semi-active suspension system is quite similar to the passive suspension system.
The difference is that in the passive system the parameter Ba is constant, while in the semi-active
system the Ba is variable, allowing the implementation of a control system to determine its value.
Regarding the motion equations and state-space model of this example, both are the same as the
passive suspension system. The only difference is that none of the parameters are changed in
practice in the latter. In the semi-active suspension system, these parameters can be changed.
Regarding the simulation, both the systems adjust the parameters in advance. Therefore, the
simulation of both does not have considerable differences. There are several devices to implement
a semi-active suspension system. In order to exemplify, here are three devices that are already used
commercially: by the automotive industry: electro-hydraulic (EH), magnetorheological dampers
(MR) and electrorheological (ER). EH dampers can be distinguished from traditional dampers due
to the presence of electronic solenoid valves in your model, unlike of the conventional model that
features only passive valves. These solenoid valves can vary the damping coefficient by changing
the size of its orifices which, in turn, allow a greater or lesser flow of the fluid between the device’s
compression and traction chambers in [4].
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Figure 1: Model of semi-active suspension system of a car room.

The state equations, to obtain the state matrix A, the matrix input B , output matrix C , and
forward transition matrix D.

ẋ(t) = Ax(t) +Bu(t) (7)
y(t) = Cx(t) +Du(t)

4 Eigenstructure by Sylvester equation

Consider the following linear time-invariant descriptor system in [5].

Esẋ(t) = Asx(t) +Bsu(t) (8)
y(t) = Csx(t)

The Sylvester equations in [5].

AsVs − EsVsHV = −BsWs, σ(HV ) ∈ C− (9)
TsAs −HTTsEs = −UsCs, σ(HT ) ∈ C− (10)

TsEsVs = 0 (11)

Consider the Es = In.
The system (4) can be written in the first-order state-space form (9), (10) (11). Thus, for

obtaining the output feedback matrix K σ(Es, As +BsKCs) ∈ C−, is used the Sylvester equation
in [5].

The theorem 4.1 is based in [5], [7].

Theorem 4.1. Let the system (8), be S-controllable, and Vs ∈ Rn×p and Ws ∈ Rm×p satisfy the
equation (9). Then, the following hold.

1) The matrices Vs and Ws given by (12),
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[
As − λiEs Bs

TsEs 0

] [
vi
wi

]
= 0 i = 1, 2, · · · , q. (12)

satisfy Sylvester matrix equation (9) for, i = 1, 2, · · · , q,
2) When

rank(

[
Vi

Wi

]
) = m i = 1, 2, · · · , q. (13)

hold, (11) gives all the solutions.

Proof. Based in [5].

Theorem 4.2. Let Es, As ∈ Rn×n, Bs ∈ Rn×m , HV ∈ Rp×p satisfy

rank[As − λEs Bs] = n, for any λ ∈ σ(HV ). (14)

Further, let H ∈ R(n+m)×m[λ] be a polynomial matrix satisfying [As − λEs Bs]H(λ) = 0n×m.
Then:
(1) The matrices Vs ∈ Rn×p and Ws ∈ Rm×p given by[

Vs

Ws

]
= Syl(H(λ), HV , Z) (15)

satisfy the matrix equation (9) for any matrix Z ∈ Rm×p. (2) When rankH(λ) = r for any
λ ∈ σ(HV ), all the matrices Vs and Ws satisfying the matrix equation (9) can be explicitly expressed
by (15).

Proof. Based in [5] and [6].

5 Numerical Algorithm
Let G(λ) and X be defined as

G(λ) = [As − λEs Bs]; X =

[
Vs

Ws

]
The following basic procedure is proposed to calculate the feedback controller that stabilizes

the closed loop system, when m + p > n. Closed loop eigenvalues are positioned arbitrarily close
to the set ; they are symmetric sets of pre-specified eigenvalues. The (Es, As, Bs, Cs) system is
considered to be strongly controllable and strongly detectable.

Algorithm
Step 1: Choose an array HT ∈ Rq−p×q−p such that σ(HT ) = ΛT ∈ C− and Sylvester equation

(10) is solved to find a matrix Ts ∈ Rq−p×n such that

rank

([
TsEs

Cs

])
= q (16)

Step 2: Sylvester equation (9) is solved, for some HV ∈ Rp×p matrix such that σ(HV ) = ΛV ∈ C−

taking into account that the matrix Vs must check the condition of the coupling (11) and taking into
account that rank (EsVs) = p .The condition (16) guarantees, in particular, that rank(TsEs) = q.
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Step 3: By construction, the matrix Vs must verify that rank (CsVs) = p and the matrix K
can be calculated by:

K = Ws(CsVs)
−1 (17)

⋄

Remark 5.1. steps 1 and 2 can be solved using standard techniques for positioning the self-
structure. Similar to the previous case, the matrices Vs and Ws used for the calculation of K
can be constructed only with real elements. In particular: if λiC−, it is considered λi+1 = λ∗

i e{
Vi = Re (vi), Vi+1 = Imag (vi)
Wi = Re (wi), Wi+1 = Imag (wi)

, where Vi and Wi denote the columns of the matrices Vs

and Ws, respectively.

In step 1, under the condition that the system is strongly observable (detectable). As will
be seen later, degrees of freedom existing in the choice of Vs that satisfy the coupling condition
TsEsVs = 0, can also be used to guarantee obtaining K such that KCsVs = Ws in [5].

5.1 Example

Consider a simple linear dynamical system (4) with M1 = 40; M2 = 450; Ba = 1.2; kf = 30;
kp = 160; in the matrizes A, B, C :

A =


0 1 0 0

− kf

M1

−Ba

M1

kf

M1

Ba

M1

0 0 0 1

− kf

M2

Ba

M2

−(kp+kf )
M1

−Ba

M2



B =


0 0
0 −1

M1

0 0
kp

M2

1
M2

 ;

C =

 1 0 0 0
0 0 1 0
0 0 0 1

 ;

Thus the matrizes A, B, C are following:

A =


0 1 0 0

−0.75 −0.03 0.75 0.03
0 0 0 1

0.0667 0.0027 −0.4222 −0.0027


B =


0 0
0 −0.0250
0 0

0.3556 0.0022

 ;

C =

 1 0 0 0
0 0 1 0
0 0 0 1

 ;

Algorithm basic
Resolved the equation (9) for calculate the matrices Ws, Vs, satisfies the equation (17) and the

matrix K, such that KCsVs = Ws:
Ts =

[
−0.3851 0.3970 −0.9512 −0.0095

]
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Vs =


−0.0045 −0.0023 −0.0014 −0.0014
0.0090 0.0069 0.0055 0.0055
0.0057 0.0039 0.0030 0.0030
−0.0113 −0.0118 −0.0119 −0.0119


Ws =

[
0.0650 0.0985 0.1314 0.1641
0.9978 0.9950 0.9912 0.9864

]
K =

[
−134.4978 −177.1450 −41.1356
−35.5740 −20.1672 −83.9791

]
where the eigenvalues are

λ1 = −1, λ2 = −2, λ3 = −3, λ4 = −8.8859.

6 Conclusions
This paper proposes solving the output feedback control problem with eigenvalues for a semi-

active suspension system using Sylvester equations. Thus, the matrices formulated are simply
prescribed in advance and highly dependent on the controllability and observability conditions of
the system where the eigenvalues are assigned. The numerical method presented applies to the
control design of the semi-active suspension system with multiple inputs and outputs.
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