Trabalho apresentado no XLI CNMAC, Unicamp - Campinas - SP, 2022.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics Preprint

Least-Squares Delayed Weighted Gradient Method

Rafael Aleixo¹ Federal University of Santa Catarina, Department of Mathematics, Blumenau, Brazil Hugo Lara Urdaneta² Federal University of Santa Catarina, Department of Control and Automation Engineering, and Comput-

Federal University of Santa Catarina, Department of Control and Automation Engineering, and Computing, Blumenau, Brazil

Abstract. The delayed weighted gradient algorithm (DWGM) is proved to be a robust iterative procedure to solve convex quadratic optimization problems. Its theoretical and numerical performance is similar to the conjugate gradient method. In this work we specialize the DWGM to deal with least-squares problems. Numerical experimentation is offered to show the effectiveness of the approach.

Keywords. Least squares, linear systems, iterative method, delayed weighted gradient method.

1 Introduction

Least-squares problems arise in different applications of mathematics, like statistics, econometrics, engineering et cetera. So, it is important to have algorithms that address these problems. Many algorithms were proposed to solving least-squares problems, among them we mention CGLS/CGNR [11], LSQR [17] and LSMR [10].

On the other hand, to minimize a convex quadratic form

$$f(x) = \frac{1}{2}x^T A x - b^T x,$$

where $A \in \mathbb{R}^{n \times n}$ is symmetric positive definite (SPD) and $b \in \mathbb{R}^n$ several methodologies were proposed [4, 7, 9, 12, 14, 15, 18]. Gradient methods play a key role in this matter. The steepest descent (SD) method proposed by Cauchy [5] generate a sequence of solution approximations x_k satisfying

$$x_{k+1} = x_k - \alpha_k g_k,$$

where $f : \mathbb{R}^n \to \mathbb{R}$ is continuously differentiable, $g_k = \nabla f(x_k)$ and

$$\alpha_k^{\rm SD} = \frac{g_k^T g_k}{g_k^T A g_k}.$$

It is proven the SD method converges Q-linearly [1]. A variant of the SD method called minimal gradient (MG) step length [3] aims to minimize the gradient norm. The solution for the above problem is

$$\alpha_k^{\rm MG} = \frac{g_k^T A g_k}{g_k^T A^2 g_k}$$

It is well known that gradient method either with α_k^{SD} or with α_k^{MG} performs very poorly [1, 6].

¹rafael.aleixo@ufsc.br

²hugo.lara.urdaneta@ufsc.br

 $\mathbf{2}$

Methods which use two step-sizes are alternatives to accelerate gradient-based methods, by imposing retard on the process (see [7]). The Delayed Weighted Gradient Method (DWGM) is a two step-size gradient method that was introduced by Oviedo-Leon in 2019 [16]. DWGM is a gradient method developed to solving symmetric positive definite systems or a strictly convex minimization problem. The main objective of DWGM is to accelerate the convergence of the gradient method by a two-step iteration. Moreover, a smoothing process is applied. In this work, we present the least-squares version of the delayed weighted gradient method in order to solve problems like the unsymmetric squared linear equations system, linear least-squares and regularized least-squares.

The remainder of this article is organized as follows: In the next section we describe the Delayed Weighted Gradient Method, while in section 3 the least-squares version is proposed. Section 4 show the numerical experimentation, and finally at section 5 some concluding remarks.

2 Delayed Weighted Gradient Method

We consider the strictly convex quadratic minimization problem,

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad f(x) = \frac{1}{2} x^T A x - b^T x$$

$$(1)$$

where $b \in \mathbb{R}^n$ and $A \in \mathbb{R}^{n \times n}$ is a symmetric and strictly positive definite matrix. Since the gradient $g(x) \equiv \nabla f(x) = Ax - b$, then the unique global solution $A^{-1}b$ for problem (1) also solves the linear system Ax = b.

Let $x_0 \in \mathbb{R}^n$ be a starting point and $g_k = g(x_k)$. Assuming the minimum gradient method that is given by

$$x_{k+1} = x_k - \alpha_k^{\text{MG}} g_k$$
, with $\alpha_k^{\text{MG}} = g_k^T w_k / ||w_k||_2^2$,

where the step-size is defined as $\alpha_k^{\text{MG}} = \operatorname{argmin}_{\alpha>0} \|\nabla f(x_k - \alpha g_k)\|_2$, and $w_k = Ag_k$. In short, the minimum gradient norm method calculates the next iterate as the point alongside the current gradient at which the norm of the next gradient is minimized.

As a two step gradient method, delayed weighted gradient method incorporates a delaying step defined as follows [16]: The first stage uses the ordinary minimum gradient point $y_k = x_k - \alpha_k^{\text{MG}} g_k$. Then, calculates the next iterate as

$$x_{k+1} = x_{k-1} + \beta_k (y_k - x_{k-1}), \text{ where } \beta_k = g_{k-1}^T (g_{k-1} - r_k) / \|g_{k-1} - r_k\|_2^2.$$

The step-size is defined by $\beta_k = \operatorname{argmin}_{\beta \in \mathbb{R}} \|\nabla f(x_{k-1} + \beta(y_k - x_{k-1}))\|_2$. It is straightforward to prove that $\nabla f(x_{k-1} + \beta(y_k - x_{k-1})) = g_{k-1} - \beta(g_{k-1} - r_k)$, for $r_k = g_k - \alpha_k^{\mathrm{MG}} w_k$. This leads to $\beta_k = \operatorname{argmin}_{\beta \in \mathbb{R}} \|g_{k-1} - \beta(g_{k-1} - r_k)\|_2 = g_{k-1}^T (g_{k-1} - r_k)/\|g_{k-1} - r_k\|_2^2$.

Some of the properties that DWGM enjoys, established in [2, 16] include the non negativity of β_k for all k, the monotonic decreasing of $\{||g_k||_2\}$ as well as the Q-linear convergence of $\{g_k\}$ to zero when k goes to infinity (which implies that $\{x_k\}$ converges to the unique global minimizer of f), and finite convergence by using A-orthogonality of the gradient vector at the current iteration with all previous gradient vectors.

Algorithm 1 LSDWGM

Require: $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$, $x_0 \in \mathbb{R}^n$, $x_{-1} = x_0$, $\epsilon > 0$. 1: $g = Ax_0 - b$ 2: $s_{-1} = s_0 = A^T g$ 3: $p_0 = As_0$ 4: k = 05: while $||s_k||_2 > \epsilon$ do $w_k = A^T p_k$ 6: $\alpha_k = s_k^T w_k / w_k^T w_k$ 7: 8: $y_k = x_k - \alpha_k s_k$ $r_k = s_k - \alpha_k w_k$ 9: $\beta_k = s_{k-1}^T (s_{k-1} - r_k) / \|s_{k-1} - r_k\|_2^2$ 10: $x_{k+1} = x_{k-1} + \beta_k (y_k - x_{k-1})$ 11: $s_{k+1} = s_{k-1} + \beta_k (r_k - s_{k-1})$ 12: $p_{k+1} = As_{k+1}$ 13:k = k + 114: 15: end while

3 Least-Squares Delayed Weighted Gradient Method

In this section, we present a variant of the DWGM, called least-squares DWGM (LSDWGM), for computing the solution x to the following problems [17]:

Unsymmetric equations: solve Ax = bLinear Least-Squares: minimize $||Ax - b||_2$ (2) Regularized Least-Squares: minimize $\left\| \begin{pmatrix} A \\ \lambda I \end{pmatrix} x - \begin{pmatrix} b \\ 0 \end{pmatrix} \right\|_{2}$,

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $\lambda \ge 0$, with $m \ge n$ and rank(A) = n.

All the problems above can be solved by applying the DWGM to the normal equations

$$A^T A x = A^T b.$$

Forming the normal equation is a simple form to symmetrize the problem we are trying to solve, but from the numerical point of view can be disastrous for large-scale problems or ill-conditioned ones. The main reason is the explicit use of $A^T A$ that either impacts on the space complexity because in general if A is a sparse matrix then $A^T A$ is less sparse or because $\kappa(A^T A) = \kappa(A)^2$, where $\kappa(A)$ is the condition number of A. But the time complexity is the most impacted with the calculation of $A^T A$ because it requires $\mathcal{O}(m^2 n)$ flops to multiply A^T by A.

Thus, an algorithm developed to solving problem (2) must have the ability to avoid forming the product $A^T A$. The implementation of the least-squares delayed weighted gradient method (LSDWGM) is straightforward. The ideia is to replace an iteration over $g_k = Ax_k - b$, by an iteration over $s_k = A^T g_k$, the residual of the normal linear system $A^T A x = A^T b$. One possible algorithm is presented in Algorithm 1.

Model	Rows	$\operatorname{Columns}$	Nonzeros	$\kappa_2(A)$
well1850	1850	712	8755	1.113129e + 02
$\operatorname{orani678}$	2529	2529	90158	9.579953e + 03
p_pilot^*	4180	1441	44375	2.661950e + 03
struct4	4350	4350	237798	7.238826e + 04
$p_pilot87^*$	6680	2030	74949	8.153260e + 03
rat^*	9408	3136	268908	1.269130e + 00
$\mathrm{model9}^{*}$	10939	2879	55956	3.163690e + 20
$\mathrm{model5}^{*}$	11802	1888	89925	7.244326e + 19
$192 \mathrm{bit}$	13691	13682	154303	5.875923e + 64
$lp_{osa_07^*}$	25067	1118	144812	6.803249e + 02
$\operatorname{testbig}^*$	31223	17613	61639	6.693068e + 02
$\operatorname{car4}^*$	33052	16384	63724	1.193634e + 00
${ m ts}{ m -palko}^*$	47235	22002	1076903	2.140518e + 02
$\mathrm{mod}2$	66409	34774	199810	8.527910e + 03

Table 1: Basic information of the models.

* for the tests we used the transpose of the model

The theoretical properties of the algorithm are inherited from the original DWGM [2, 16]. Note that problem (2) is a convex quadratic optimization problem with hessian given by $A^T A$.

4 Numerical Experiments

We chose fourteen datasets from the SuiteSparse Matrix Collection [8, 13] in order to evaluate the differences between the least-squares DWGM and the ordinary DWGM applied to the normal equations $A^T A b = A^T b$. All the experiments were performed on a intel(R) CORE(TM) i7-4770, CPU 3.40 GHz with 16 GB RAM. Table 1 presents some basic information about the models we are using.

One of the main issues related to the least-squares solutions of linear systems is the possibility of forming the matrix $A^T A$. As explained before, the calculation of $A^T A$ must be avoided. Note that DWGM was designed to run with SPD matrices, but our inputs are not SPD. Thus, in order to run DWGM for these type of datasets we must run it on the normal equations $A^T A x = A^T b$, which is SPD (we selected full-rank matrices). With this in mind, we calculated the least-squares solutions of fourteen linear systems Ax = b with the DWGM and LSDWGM algorithms, where the matrices A are described in Table 1, $b = [1, 1, ..., 1]^T$ and the starting point is $x_0 = [0, 0, ..., 0]^T$. The stopping criterium is $\|\nabla f(x_k)\|_2 \leq \epsilon$, for a given data-dependent ϵ , it varies from 10^{-5} to 10^{-8} .

In Tables 2 and 3 we present a performance comparison of DWGM performed on $A^T A$ and the least-squares DWGM performed on A. We compare the norm of the solution error $e_k = x_k - x^*$, the norm of the residual error $r_k = Ae_k$ and the norm of the normal equations residual error $s_k = A^T r_k$. The "theoretical solution" x^* used on the calculation of e_k was calculated using the Matlab's command $A \setminus b$. Besides, we present the CPU time comparison. Naturally, we expect that DWGM is faster than LSDWGM because LSDWGM requires an extra matrix-vector multiplication per iteration. Thus, for the CPU time comparison we compare the time of DWGM plus the time of $A^T A$ calculation with the time of LSDWGM. Overall, the LSDWGM is faster than the DWGM plus $A^T A$ calculation. It happens, as explained before, because the $A^T A$ takes $\mathcal{O}(m^2 n)$ flops to be

Ľ	•		
2			
		,	

			well1850		
	niter	$\ e_k\ _2$	$\ r_k\ _2$	$\ s_k\ _2$	$\mathrm{CPU}(\mathbf{s})$
DWGM LSDWGM	$\begin{array}{c} 400\\ 400 \end{array}$	2.5353e-004 2.6056e-004	1.4065e-005 1.4390e-005	9.6105e-007 9.8246e-007	$0.0619 \\ 0.0609$
			orani678		
	niter	$\ e_k\ _2$	$\ r_k\ _2$	$\ s_k\ _2$	CPU(s)
DWGM	2956	5.1285e-006	1.9783e-007	3.3051e-008	26.8766
LSDWGM	2989	5.2135e-006	2.0006e-007	2.5798e-008	2.13678
			lp_pilot		
	niter	$\ e_k\ _2$	$ r_k _2$	$\ s_k\ _2$	$\mathrm{CPU}(\mathrm{s})$
DWGM	3844	2.4746e-005	3.8453e-006	1.0210e-006	2.59552
LSDWGM	3859	2.4810e-005	3.8552e-006	1.0199e-006	1.52112
			struct4		
	niter	$\ e_k\ _2$	$\ r_k\ _2$	$\ s_k\ _2$	$\operatorname{CPU}(\mathbf{s})$
DWGM	93622	6.0459e-005	6.4229e-007	1.9420e-005	756.879
LSDWGM	92221	6.0903e-005	6.1554e-007	1.7585e-005	141.407
			lp_pilot87		
	niter	$\ e_k\ _2$	$\ r_k\ _2$	$\ s_k\ _2$	$\operatorname{CPU}(\mathbf{s})$
DWGM	10236	7.2589e-008	3.2606e-008	2.3191e-006	13.5752
LSDWGM	10174	7.0216e-008	3.1441e-008	4.3149e-006	6.48128
			rat		
	niter	$\ e_k\ _2$	$\ r_k\ _2$	$\ s_k\ _2$	$\mathrm{CPU}(\mathbf{s})$
DWGM	9	3.5902e-007	5.5133e-007	8.6030e-007	0.1249
LSDWGM	9	3.5902e-007	5.5133e-007	8.6030e-007	0.0109
			model9		
	niter	$\ e_k\ _2$	$ r_k _2$	$\ s_k\ _2$	$\operatorname{CPU}(\mathbf{s})$
DWGM	4607	1.3647e-005	1.0332e-005	3.9393e-005	3.22016
LSDWGM	4517	1.3534e-005	1.0222e-005	1.5405e-005	2.65256

Table 2: Iteration information of DWGM and LSDWGM for fourteen models.

performed which is more computationally expensive than the DWGM algorithm itself.

5 Conclusion

In this work we presented the least-squares version of the well known delayed weighted gradient method. Its implementation is straightforward and is based on iterations over the residual of the normal linear system or as a gradient of the convex quadratic form

$$f(x) = \frac{1}{2}x^T A^T A x + x^T A^T b.$$

The numerical experiments demonstrated the method is robust and offers a good alternative to the DWGM applied to the normal equations.

			model5		
	niter	$\ e_k\ _2$	$\ r_k\ _2$	$\ s_k\ _2$	CPU(s)
DWGM LSDWGM	$\begin{array}{c} 6617 \\ 6625 \end{array}$	1.5582e-004 1.5609e-004	3.5101e-005 3.5151e-005	9.9800e-006 9.9934e-006	$7.28182 \\ 5.11407$
			192bit		
	niter	$\ e_k\ _2$	$ r_k _2$	$\ s_k\ _2$	CPU(s)
DWGM LSDWGM	$4449 \\ 4311$	3.6584e-003 3.6586e-003	1.7346e-004 1.7347e-004	9.9971e-006 9.9979e-006	$29.4261 \\ 8.70999$
			lp osa 07		
	niter	$\ e_k\ _2$	$ r_k _2$	$\ s_k\ _2$	CPU(s)
DWGM LSDWGM	$\begin{array}{c} 171 \\ 190 \end{array}$	3.4179e-008 3.1874e-008	1.6105e-007 1.4979e-007	8.1111e-007 7.2322e-007	$\begin{array}{c} 0.1109 \\ 0.2088 \end{array}$
			testbig		
	niter	$\ e_k\ _2$	$ r_k _2$	$\ s_k\ _2$	CPU(s)
DWGM LSDWGM	$\begin{array}{c} 49 \\ 47 \end{array}$	6.1102e-007 4.9695e-007	1.4512e-006 7.5874e-007	5.4917e-006 5.0574e-006	$1.1264 \\ 0.0529$
			car4		
	niter	$\ e_k\ _2$	$ r_k _2$	$\ s_k\ _2$	CPU(s)
DWGM LSDWGM	7 7	1.0495e-007 1.0495e-007	1.5882e-007 1.5882e-007	2.4144e-007 2.4144e-007	$0.0330 \\ 0.0090$
			ts-palko		
	niter	$\ e_k\ _2$	$\ r_k\ _2$	$\ s_k\ _2$	CPU(s)
DWGM LSDWGM	91 93	1.3661e-008 1.6256e-008	9.2081e-008 1.0862e-007	7.4641e-007 9.1126e-007	$4.0327 \\ 0.6766$
			mod2		
	niter	$\ e_k\ _2$	$\ r_k\ _2$	$\ s_k\ _2$	CPU(s)
DWGM LSDWGM	$25963 \\ 26180$	6.1060e-006 6.1070e-006	7.0713e-006 7.0724e-006	8.9153e-004 8.2159e-004	120.035 88.3913

Table 3: Iteration information of DWGM and LSDWGM for fourteen models.

References

- H. Akaike. "On a successive transformation of probability distribution and its application to the analysis of the optimum gradient method". In: Annals of the Institute of Statistical Mathematics 11 (1959), pp. 1–16. DOI: 10.1007/BF01831719.
- R. Andreani and M. Raydan. "Properties of the delayed weighted gradient method". In: Computational Optimization and Applications 78 (2021), pp. 167–180. DOI: 10.1007/ s10589-020-00232-9.
- [3] R. De Asmundis et al. "An efficient gradient method using the Yuan steplength". In: Computational Optimization and Applications 59 (2014), pp. 541–563. DOI: 10.1007/s10589-014-9669-5.
- [4] J. Barzilai and J. M. Borwein. "Two-point step size gradient methods". In: IMA Journal of Numerical Analysis 8.1 (1988), pp. 141–148. DOI: 10.1093/imanum/8.1.141.

- [5] A. L. Cauchy. "Méthode générale pour la résolution des systemes d'équations simultanées".
 In: Comptes Rendus Sci. Paris 25 (1847), pp. 536–538.
- Y. H. Dai. "Alternate step gradient method". In: Optimization 52.4-5 (2003), pp. 395-415.
 DOI: 10.1080/02331930310001611547.
- Y. H. Dai, Y. Huang, and X. W. Liu. "A family of spectral gradient methods for optimization". In: Computational Optimization and Applications 74 (2019), pp. 43–65. DOI: 10.1007/ s10589-019-00107-8.
- [8] T. A. Davis and Y. Hu. "The University of Florida Sparse Matrix Collection". In: ACM Trans. Math. Softw. 38.1 (2011), pp. 1–25. DOI: 10.1145/2049662.2049663.
- [9] D. di Serafino et al. "On the steplength selection in gradient methods for unconstrained optimization". In: Applied Mathematics and Computation 318 (2018), pp. 176–195. DOI: https://doi.org/10.1016/j.amc.2017.07.037.
- [10] D. C. L. Fong and M. Saunders. "LSMR: An Iterative Algorithm for Sparse Least-Squares Problems". In: SIAM Journal on Scientific Computing 33.5 (2011), pp. 2950-2971. DOI: 10.1137/10079687X.
- [11] R. W. Freund, G. H. Golub, and N. M. Nachtigal. "Iterative solution of linear systems". In: Acta Numerica 1 (1992), pp. 57–100. DOI: 10.1017/S0962492900002245.
- [12] A. Friedlander et al. "Gradient method with retards and generalizations". In: SIAM Journal on Numerical Analysis 36.1 (1999), pp. 275–289. DOI: 10.1137/S003614299427315X.
- [13] S. P. Kolodziej et al. "The SuiteSparse Matrix Collection website interface". In: Journal of Open Source Software 4.35 (2019), pp. 1244:1–1244:4. DOI: 10.21105/joss.01244.
- [14] J. L. Lamotte, B. Molina, and M. Raydan. "Smooth and adaptive gradient method with retards". In: Mathematical and Computer Modelling 36.9 (2002), pp. 1161-1168. DOI: 10.1016/S0895-7177(02)00266-2.
- [15] H. Oviedo, R. Andreani, and M. Raydan. "A family of optimal weighted conjugate-gradienttype methods for strictly convex quadratic minimization". In: Numerical Algorithms 90 (2022), pp. 1225–1252. DOI: 10.1007/s11075-021-01228-0.
- H. F. Oviedo-Leon. "A delayed weighted gradient method for strictly convex quadratic minimization". In: Computational Optimization and Applications 74 (2019), pp. 729-746.
 DOI: 10.1007/s10589-019-00125-6.
- [17] C. C. Paige and M. A. Saunders. "LSQR: An algorithm for sparse linear equations and sparse least squares". In: ACM Trans. Math. Softw. 8.1 (1982), pp. 43-71. DOI: 10.1145/ 355984.355989.
- [18] Y. X. Yuan. "A new stepsize for the steepest descent method". In: Journal of Computational Mathematics 24.2 (2006), pp. 149–156.