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Abstract. The delayed weighted gradient algorithm (DWGM) is proved to be a robust iterative
procedure to solve convex quadratic optimization problems. Its theoretical and numerical perfor-
mance is similar to the conjugate gradient method. In this work we specialize the DWGM to deal
with least-squares problems. Numerical experimentation is o�ered to show the e�ectiveness of the
approach.
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1 Introduction

Least-squares problems arise in di�erent applications of mathematics, like statistics, econo-
metrics, engineering et cetera. So, it is important to have algorithms that address these prob-
lems. Many algorithms were proposed to solving least-squares problems, among them we mention
CGLS/CGNR [11], LSQR [17] and LSMR [10].

On the other hand, to minimize a convex quadratic form

f(x) =
1

2
xTAx− bTx,

where A ∈ Rn×n is symmetric positive de�nite (SPD) and b ∈ Rn several methodologies were
proposed [4, 7, 9, 12, 14, 15, 18]. Gradient methods play a key role in this matter. The steepest
descent (SD) method proposed by Cauchy [5] generate a sequence of solution approximations xk
satisfying

xk+1 = xk − αkgk,

where f : Rn → R is continuously di�erentiable, gk = ∇f(xk) and

αSDk =
gTk gk
gTk Agk

.

It is proven the SD method converges Q-linearly [1]. A variant of the SD method called minimal
gradient (MG) step length [3] aims to minimize the gradient norm. The solution for the above
problem is

αMGk =
gTk Agk
gTk A

2gk
.

It is well known that gradient method either with αSDk or with αMG
k performs very poorly [1, 6].

1rafael.aleixo@ufsc.br
2hugo.lara.urdaneta@ufsc.br

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, v. 9, n. 1, 2022.

Trabalho apresentado no XLI CNMAC, Unicamp - Campinas - SP, 2022.

DOI: 10.5540/03.2022.009.01.0267 010267-1 © 2022 SBMAC

http://dx.doi.org/10.5540/03.2022.009.01.0267


2

Methods which use two step-sizes are alternatives to accelerate gradient-based methods, by
imposing retard on the process (see [7]). The DelayedWeighted Gradient Method (DWGM) is a two
step-size gradient method that was introduced by Oviedo-Leon in 2019 [16]. DWGM is a gradient
method developed to solving symmetric positive de�nite systems or a strictly convex minimization
problem. The main objective of DWGM is to accelerate the convergence of the gradient method
by a two-step iteration. Moreover, a smoothing process is applied. In this work, we present the
least-squares version of the delayed weighted gradient method in order to solve problems like the
unsymmetric squared linear equations system, linear least-squares and regularized least-squares.

The remainder of this article is organized as follows: In the next section we describe the Delayed
Weighted Gradient Method, while in section 3 the least-squares version is proposed. Section 4 show
the numerical experimentation, and �nally at section 5 some concluding remarks.

2 Delayed Weighted Gradient Method

We consider the strictly convex quadratic minimization problem,

minimize
x ∈ Rn

f(x) =
1

2
xTAx− bTx (1)

where b ∈ Rn and A ∈ Rn×n is a symmetric and strictly positive de�nite matrix. Since the gradient
g(x) ≡ ∇f(x) = Ax−b, then the unique global solution A−1b for problem (1) also solves the linear
system Ax = b.

Let x0 ∈ Rn be a starting point and gk = g(xk). Asmundis et al. [3] present the minimum
gradient method that is given by

xk+1 = xk − αMGk gk, with αMGk = gTk wk/‖wk‖22,

where the step-size is de�ned as αMGk = argminα>0‖∇f(xk − αgk)‖2, and wk = Agk. In short,
the minimum gradient norm method calculates the next iterate as the point alongside the current
gradient at which the norm of the next gradient is minimized.

As a two step gradient method, delayed weighted gradient method incorporates a delaying step
de�ned as follows [16]: The �rst stage uses the ordinary minimum gradient point yk = xk−αMGk gk.
Then, calculates the next iterate as

xk+1 = xk−1 + βk(yk − xk−1), where βk = gTk−1(gk−1 − rk)/‖gk−1 − rk‖22.

The step-size is de�ned by βk = argminβ∈R ‖∇f(xk−1 + β(yk − xk−1))‖2. It is straightforward to

prove that ∇f(xk−1 + β(yk − xk−1)) = gk−1 − β(gk−1 − rk), for rk = gk − αMGk wk. This leads to
βk = argminβ∈R ‖gk−1 − β(gk−1 − rk)‖2 = gTk−1(gk−1 − rk)/‖gk−1 − rk‖22.

Some of the properties that DWGM enjoys, established in [2, 16] include the non negativity of
βk for all k, the monotonic decreasing of {‖gk‖2} as well as the Q-linear convergence of {gk} to
zero when k goes to in�nity (which implies that {xk} converges to the unique global minimizer of
f), and �nite convergence by using A-orthogonality of the gradient vector at the current iteration
with all previous gradient vectors.
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Algorithm 1 LSDWGM

Require: A ∈ Rn×n, b ∈ Rn, x0 ∈ Rn, x−1 = x0, ε > 0.

1: g = Ax0 − b
2: s−1 = s0 = AT g

3: p0 = As0

4: k = 0

5: while ‖sk‖2 > ε do

6: wk = AT pk

7: αk = sTkwk/w
T
k wk

8: yk = xk − αksk
9: rk = sk − αkwk
10: βk = sTk−1(sk−1 − rk)/‖sk−1 − rk‖22
11: xk+1 = xk−1 + βk(yk − xk−1)
12: sk+1 = sk−1 + βk(rk − sk−1)
13: pk+1 = Ask+1

14: k = k + 1

15: end while

3 Least-Squares Delayed Weighted Gradient Method

In this section, we present a variant of the DWGM, called least-squares DWGM (LSDWGM),
for computing the solution x to the following problems [17]:

Unsymmetric equations: solve Ax = b

Linear Least-Squares: minimize ‖Ax− b‖2

Regularized Least-Squares: minimize

∥∥∥∥( A
λI

)
x−

(
b
0

)∥∥∥∥
2

,

(2)

where A ∈ Rm×n, b ∈ Rm, λ > 0, with m > n and rank(A) = n.
All the problems above can be solved by applying the DWGM to the normal equations

ATAx = AT b.

Forming the normal equation is a simple form to symmetrize the problem we are trying to solve,
but from the numerical point of view can be disastrous for large-scale problems or ill-conditioned
ones. The main reason is the explicit use of ATA that either impacts on the space complexity
because in general if A is a sparse matrix then ATA is less sparse or because κ(ATA) = κ(A)2,
where κ(A) is the condition number of A. But the time complexity is the most impacted with the
calculation of ATA because it requires O(m2n) �ops to multiply AT by A.

Thus, an algorithm developed to solving problem (2) must have the ability to avoid forming
the product ATA. The implementation of the least-squares delayed weighted gradient method
(LSDWGM) is straightforward. The ideia is to replace an iteration over gk = Axk − b, by an
iteration over sk = AT gk, the residual of the normal linear system ATAx = AT b. One possible
algorithm is presented in Algorithm 1.
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Table 1: Basic information of the models.

Model Rows Columns Nonzeros κ2(A)

well1850 1850 712 8755 1.113129e+ 02
orani678 2529 2529 90158 9.579953e+ 03
lp_pilot∗ 4180 1441 44375 2.661950e+ 03
struct4 4350 4350 237798 7.238826e+ 04
lp_pilot87∗ 6680 2030 74949 8.153260e+ 03
rat∗ 9408 3136 268908 1.269130e+ 00
model9∗ 10939 2879 55956 3.163690e+ 20
model5∗ 11802 1888 89925 7.244326e+ 19
192bit 13691 13682 154303 5.875923e+ 64
lp_osa_07∗ 25067 1118 144812 6.803249e+ 02
testbig∗ 31223 17613 61639 6.693068e+ 02
car4∗ 33052 16384 63724 1.193634e+ 00
ts-palko∗ 47235 22002 1076903 2.140518e+ 02
mod2 66409 34774 199810 8.527910e+ 03
∗ for the tests we used the transpose of the model

The theoretical properties of the algorithm are inherited from the original DWGM [2, 16]. Note
that problem (2) is a convex quadratic optimization problem with hessian given by ATA.

4 Numerical Experiments

We chose fourteen datasets from the SuiteSparse Matrix Collection [8, 13] in order to evaluate
the di�erences between the least-squares DWGM and the ordinary DWGM applied to the normal
equations ATAb = AT b. All the experiments were performed on a intel(R) CORE(TM) i7-4770,
CPU 3.40 GHz with 16 GB RAM. Table 1 presents some basic information about the models we
are using.

One of the main issues related to the least-squares solutions of linear systems is the possibility
of forming the matrix ATA. As explained before, the calculation of ATA must be avoided. Note
that DWGM was designed to run with SPD matrices, but our inputs are not SPD. Thus, in order
to run DWGM for these type of datasets we must run it on the normal equations ATAx = AT b,
which is SPD (we selected full-rank matrices). With this in mind, we calculated the least-squares
solutions of fourteen linear systems Ax = b with the DWGM and LSDWGM algorithms, where the
matrices A are described in Table 1, b = [1, 1, . . . , 1]T and the starting point is x0 = [0, 0, . . . , 0]T .
The stopping criterium is ‖∇f(xk)‖2 6 ε, for a given data-dependent ε, it varies from 10−5 to
10−8.

In Tables 2 and 3 we present a performance comparison of DWGM performed on ATA and the
least-squares DWGM performed on A. We compare the norm of the solution error ek = xk − x∗,
the norm of the residual error rk = Aek and the norm of the normal equations residual error
sk = AT rk. The �theoretical solution� x∗ used on the calculation of ek was calculated using the
Matlab's command A\b. Besides, we present the CPU time comparison. Naturally, we expect that
DWGM is faster than LSDWGM because LSDWGM requires an extra matrix-vector multiplication
per iteration. Thus, for the CPU time comparison we compare the time of DWGM plus the time
of ATA calculation with the time of LSDWGM. Overall, the LSDWGM is faster than the DWGM
plus ATA calculation. It happens, as explained before, because the ATA takes O(m2n) �ops to be

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 9, n. 1, 2022.

DOI: 10.5540/03.2022.009.01.0267 010267-4 © 2022 SBMAC

http://dx.doi.org/10.5540/03.2022.009.01.0267


5

Table 2: Iteration information of DWGM and LSDWGM for fourteen models.

well1850

niter ‖ek‖2 ‖rk‖2 ‖sk‖2 CPU(s)

DWGM 400 2.5353e-004 1.4065e-005 9.6105e-007 0.0619
LSDWGM 400 2.6056e-004 1.4390e-005 9.8246e-007 0.0609

orani678

niter ‖ek‖2 ‖rk‖2 ‖sk‖2 CPU(s)

DWGM 2956 5.1285e-006 1.9783e-007 3.3051e-008 26.8766
LSDWGM 2989 5.2135e-006 2.0006e-007 2.5798e-008 2.13678

lp_pilot

niter ‖ek‖2 ‖rk‖2 ‖sk‖2 CPU(s)

DWGM 3844 2.4746e-005 3.8453e-006 1.0210e-006 2.59552
LSDWGM 3859 2.4810e-005 3.8552e-006 1.0199e-006 1.52112

struct4

niter ‖ek‖2 ‖rk‖2 ‖sk‖2 CPU(s)

DWGM 93622 6.0459e-005 6.4229e-007 1.9420e-005 756.879
LSDWGM 92221 6.0903e-005 6.1554e-007 1.7585e-005 141.407

lp_pilot87

niter ‖ek‖2 ‖rk‖2 ‖sk‖2 CPU(s)

DWGM 10236 7.2589e-008 3.2606e-008 2.3191e-006 13.5752
LSDWGM 10174 7.0216e-008 3.1441e-008 4.3149e-006 6.48128

rat

niter ‖ek‖2 ‖rk‖2 ‖sk‖2 CPU(s)

DWGM 9 3.5902e-007 5.5133e-007 8.6030e-007 0.1249
LSDWGM 9 3.5902e-007 5.5133e-007 8.6030e-007 0.0109

model9

niter ‖ek‖2 ‖rk‖2 ‖sk‖2 CPU(s)

DWGM 4607 1.3647e-005 1.0332e-005 3.9393e-005 3.22016
LSDWGM 4517 1.3534e-005 1.0222e-005 1.5405e-005 2.65256

performed which is more computationally expensive than the DWGM algorithm itself.

5 Conclusion

In this work we presented the least-squares version of the well known delayed weighted gradient
method. Its implementation is straightforward and is based on iterations over the residual of the
normal linear system or as a gradient of the convex quadratic form

f(x) =
1

2
xTATAx+ xTAT b.

The numerical experiments demonstrated the method is robust and o�ers a good alternative to
the DWGM applied to the normal equations.
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Table 3: Iteration information of DWGM and LSDWGM for fourteen models.

model5

niter ‖ek‖2 ‖rk‖2 ‖sk‖2 CPU(s)

DWGM 6617 1.5582e-004 3.5101e-005 9.9800e-006 7.28182
LSDWGM 6625 1.5609e-004 3.5151e-005 9.9934e-006 5.11407

192bit

niter ‖ek‖2 ‖rk‖2 ‖sk‖2 CPU(s)

DWGM 4449 3.6584e-003 1.7346e-004 9.9971e-006 29.4261
LSDWGM 4311 3.6586e-003 1.7347e-004 9.9979e-006 8.70999

lp_osa_07

niter ‖ek‖2 ‖rk‖2 ‖sk‖2 CPU(s)

DWGM 171 3.4179e-008 1.6105e-007 8.1111e-007 0.1109
LSDWGM 190 3.1874e-008 1.4979e-007 7.2322e-007 0.2088

testbig

niter ‖ek‖2 ‖rk‖2 ‖sk‖2 CPU(s)

DWGM 49 6.1102e-007 1.4512e-006 5.4917e-006 1.1264
LSDWGM 47 4.9695e-007 7.5874e-007 5.0574e-006 0.0529

car4

niter ‖ek‖2 ‖rk‖2 ‖sk‖2 CPU(s)

DWGM 7 1.0495e-007 1.5882e-007 2.4144e-007 0.0330
LSDWGM 7 1.0495e-007 1.5882e-007 2.4144e-007 0.0090

ts-palko

niter ‖ek‖2 ‖rk‖2 ‖sk‖2 CPU(s)

DWGM 91 1.3661e-008 9.2081e-008 7.4641e-007 4.0327
LSDWGM 93 1.6256e-008 1.0862e-007 9.1126e-007 0.6766

mod2

niter ‖ek‖2 ‖rk‖2 ‖sk‖2 CPU(s)

DWGM 25963 6.1060e-006 7.0713e-006 8.9153e-004 120.035
LSDWGM 26180 6.1070e-006 7.0724e-006 8.2159e-004 88.3913
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