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Abstract. The Initial and Terminal Value Theorems provide information about the limiting values
of applications whose Laplace Transform is known. Such theorems, in addition to being relevant in
their original form, are susceptible to generalizations that are also important. This article demon-
strates the Initial and Terminal Value Theorems and their generalizations, studying these results
for possible applications in Engineering and Physics. The novelty of this study is mainly in the
presentation of the results. Despite being a review article, it presents proofs of theorems that
are uncommon to be found in the literature. Therefore, this work contributes in the form of a
complementary material for the study of the Laplace Transform and its applications.
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1 Introduction

The Initial and Terminal Value Theorems have great relevance to differential equations. There
are important applications in Electrical Engineering, mainly in the analysis of electrical circuits
[4]. In order to find the limiting values of functions that model a circuit, the Laplace Transform is
used, transforming the function with a domain in t into another with a domain in s. In this way,
the Initial and Terminal Value Theorems allow us to find the limiting values of these respective
functions without calculating their Inverse Laplace Transform, which considerably reduces the
algebraic operability, in addition to providing information about the function as t → 0 or as
t → ∞, via the Laplace Transform, even though the function is not known explicitly [7].

There are applications in statistical mechanics in stochastic processes, such as Brownian motion
and the Kubo relation [1]. The Initial and Terminal Value Theorems are used to verify the asymp-
totic behavior of the diffusion constant. Additionally, the concept of normal diffusion was studied
by analyzing the correlation function in its asymptotic format [1]. In this case, the generalizations
of the Initial and Terminal Value Theorems were widely used.

Finally, it is possible to find in the literature some materials that exemplify applications of
such theorems and their generalizations in works on Engineering and Physics [1, 3–6]. On the
other hand, a mathematical proof of these results is difficult to find in the literature, especially
for generalizations. Therefore, this work aims to demonstrate these theorems and contribute as a
complementary study material on Laplace Transform and its applications.
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2 Preliminary Concepts
In this section, we present some definitions and fundamental theorems for the understanding

and proof of the Initial and Terminal Value Theorems and their generalizations.

2.1 Function of Exponential Order γ

Definition 2.1. A function f has exponential order γ if there exist constants M > 0 and γ > 0
such that for some t0 ≥ 0

|f(t)| ≤ Meγt, ∀ t ≥ t0. (1)

2.2 Piecewise Continuity
Definition 2.2. A function f has a jump discontinuity at a point t0 if both the limits

lim
t→t−0

f(t) = α and lim
t→t+0

f(t) = β (2)

exist (as numbers) and are distinct, that is, α ̸= β.

Definition 2.3. A function f is piecewise continuous on the interval [0,∞[ if

1) lim
t→0+

f(t) = f(0);

2) f is continuous on the interval [0, x[, for all x > 0, except, possibly, at a finite number of
points τ1, τ2, . . . , τn in [0, x[, at which f has a jump discontinuity.

2.3 Integral Transforms
Definition 2.4. Given a function f : I ⊂ R −→ C, where I is a real interval, an integral transform
of f is a function defined by

F (s) =

∫
I

K(s, t)f(t)dt (3)

where F (s) is called the integral transform of the function f , K(s, t) is called the kernel of the
transform, and s is a real or complex parameter.

2.4 The Laplace Transform
Definition 2.5. Let f : [0,∞[⊂ R −→ C a function and s a real or complex parameter. We define
the Laplace Transform of f as:

F (s) = L(f(t)) =
∫ ∞

0

e−stf(t) dt (4)

when the improper integral is convergent.

Note that the Laplace Transform is an integral transform with kernel K(s, t) = e−st.

Theorem 2.1. Let f of exponential order γ and piecewise continuous on [0, x] for all x > 0. Then
F (s) = L(f(t)) is convergent for Re(s) > γ.

A proof for this theorem can be found in [7].
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2.5 Admissible Functions

Definition 2.6. We define L as the set of all functions of type f : [0,∞[⊂ R −→ C such that the
Laplace transform exists for some value of s.

Definition 2.7. A function f : [0,∞[⊂ R −→ C is admissible if it is piecewise continuous on [0, x]
for all x > 0 and has exponential order γ.

By the Theorem 2.1, admissible functions belong to L. However, there are certainly functions
in L that do not satisfy one or both of the admissibility conditions.

Theorem 2.2. If f ∈ L and L(f(t)) = F (s) then

lim
Re(s)→∞

F (s) = 0 (5)

A proof for this theorem can be found in [2].

2.6 Transform of the First Derivative

Theorem 2.3. Let f a differentiable function of exponential order γ, such that f ′ is piecewise
continuous on [0, x] for all x > 0. Then

L(f ′(t)) = sL(f(t))− f(0) (6)

for Re(s) > γ.

Proof. Since

L(f ′(t)) =

∫ ∞

0

e−stf ′(t) dt = lim
u→∞

(∫ u

0

e−stf ′(t) dt

)
using integration by parts

∫ u

0

e−stf ′(t) dt = e−stf(t)
∣∣∣u
0
+ s

∫ u

0

e−stf(t) dt = e−suf(u)− f(0) + s

∫ u

0

e−stf(t) dt

Applying the limit,

lim
u→∞

(
e−suf(u)− f(0) + s

∫ u

0

e−stf(t) dt

)
= s

∫ ∞

0

e−stf(t) dt− f(0)

for Re(s) > γ because, thus, (e−suf(u)) → 0 according to u → ∞.
We have ∫ ∞

0

e−stf ′(t) dt = s

∫ ∞

0

e−stf(t) dt− f(0)

for Re(s) > γ, that is,

L(f ′(t)) = sL(f(t))− f(0)
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3 Initial and Terminal Value Theorems and Generalizations
In this section, we present and demonstrate the Initial and Terminal Value Theorems, as well

as their important generalizations.

3.1 Initial Value Theorem
Theorem 3.1. Let f a differentiable function of exponential order γ, such that f ′ is piecewise
continuous on [0, x] for all x > 0 and F (s) = L (f(t)). Then,

f(0) = lim
t→0+

f(t) = lim
s→∞

sF (s) (s real)

Proof. According to Theorems 2.2 and 2.3, when s > γ

lim
s→∞

(sF (s)− f(0)) = 0. (7)

Implying

f(0) = lim
s→∞

s F (s). (8)

Since f is piecewise continuous, lim
t→0+

f(t) = f(0) which concludes the proof.

3.2 Terminal Value Theorem
Theorem 3.2. Let f a differentiable function of exponential order γ, such that f ′ is piecewise
continuous on [0, x] for all x > 0 and suppose lim

t→∞
f(t) exists. Then, the value of this limit is

given by

lim
t→∞

f(t) = lim
s→0

s F (s) (s real) (9)

where F (s) = L (f(t)).

Proof. f being of exponential order γ, by the Theorem 2.3, for s > γ

L (f ′(t)) = sF (s)− f(0). (10)

Applying the limit,

lim
s→0

(sF (s)− f(0)) = lim
s→0

∫ ∞

0

e−st f ′(t) dt

=

∫ ∞

0

f ′(t) dt

= lim
u→∞

∫ u

0

f ′(t) dt

= lim
u→∞

(f(u)− f(0)) . (11)

In this way, we get

lim
s→0

(sF (s)− f(0)) = lim
u→∞

(f(u)− f(0)) =⇒ lim
u→∞

f(u) = lim
s→0

sF (s). (12)
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3.3 Generalization of the Initial Value Theorem
Theorem 3.3. Let f and g differentiable functions of exponential order γ, with piecewise contin-
uous derivatives on [0, x] for all x > 0 where F (s) = L (f(t)) and G(s) = L (g(t)), where s real

parameter. If lim
t→0+

f(t)

g(t)
= 1, then lim

s→∞

F (s)

G(s)
= 1.

Proof.

lim
s→∞

F (s)

G(s)
= lim

s→∞

sF (s)

sG(s)
=

lim
s→∞

sF (s)

lim
s→∞

sG(s)

Theo. 3.1
=

lim
t→0+

f(t)

lim
t→0+

g(t)
= lim

t→0+

f(t)

g(t)
= 1.

3.4 Generalization of the Terminal Value Theorem
Theorem 3.4. Let f and g differentiable functions of exponential order γ, with piecewise contin-
uous derivatives on [0, x] for all x > 0 where F (s) = L (f(t)) and G(s) = L (g(t)), where s real

parameter. If lim
t→∞

f(t)

g(t)
= 1, then lim

s→0

F (s)

G(s)
= 1.

Proof.

lim
s→0

F (s)

G(s)
= lim

s→0

sF (s)

sG(s)
=

lim
s→0

sF (s)

lim
s→0

sG(s)

Theo. 3.2
=

lim
t→∞

f(t)

lim
t→∞

g(t)
= lim

t→∞

f(t)

g(t)
= 1.

4 An Interesting Application
The book [8] brings up two interesting exercises at the end of chapter 1 that can be used as

examples of the application of the Initial and Terminal Value Theorems. We will transform such
exercises, which deal with the Gamma Function, in the following theorem.

The Gamma Function was first studied by Euler, in 1730, in research on a way to interpolate
the factorial of a number. It was later studied by other mathematicians, including Adrian Marie
Legendre, who, in 1809, named it as we know it today.

We denote by

Γ(p) =

∫ ∞

0

xp−1e−x dx (13)

the Gamma Function, which converges when p > 0 (real). This function has several interesting
properties. It satisfies, for example, the recurrence relation Γ(p + 1) = pΓ(p). It also satisfies
Γ(n) = (n− 1)! for n ∈ N.

It can be easily demonstrated, using Definition 2.5, that L (tn) =
n!

sn+1
for n ∈ N. We can

generalize such a transform, for not natural powers, using the Gamma Function. In fact,

L(tν) =
∫ ∞

0

tνe−st dt (14)

by a change of variables, where x = st with s > 0, we have
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L (tν) =

∫ ∞

0

e−x
(x
s

)ν 1

s
dx

=

∫ ∞

0

xνe−x dx

sν+1
. (15)

So, we get

L (tν) =
Γ(ν + 1)

sν+1
, ν > −1, s ∈ R∗

+. (16)

With this, we can work on the exercises mentioned in the book [8], transforming them into the
following theorem.

Theorem 4.1. Let f an exponential order differentiable function γ, with piecewise continuous
derivatives on [0, x] for all x > 0 where F (s) = L (f(t)), with s a real parameter and c a random
real constant.

(a) If lim
t→0

f(t)

ctp
= 1, for p > −1, then lim

s→∞

F (s)
cΓ(p+1)
sp+1

= 1;

(b) If lim
t→∞

f(t)

ctp
= 1, for p > −1, then lim

s→0

F (s)
cΓ(p+1)
sp+1

= 1.

Proof. First, note that
cΓ(p+ 1)

sp+1
= L(ctp), from Equation (16). Then,

(a)

lim
s→∞

F (s)
cΓ(p+1)
sp+1

= lim
s→∞

sF (s)

s
(

cΓ(p+1)
sp+1

) =
lim
s→∞

sF (s)

lim
s→∞

s

(
cΓ(p+ 1)

sp+1

) Theo. 3.1
=

lim
t→0

f(t)

lim
t→0

ctp
= lim

t→0

f(t)

ctp
= 1

(b)

lim
s→0

F (s)
cΓ(p+1)
sp+1

= lim
s→0

sF (s)

s
(

cΓ(p+1)
sp+1

) =
lim
s→0

sF (s)

lim
s→0

s

(
cΓ(p+ 1)

sp+1

) Theo. 3.2
=

lim
t→∞

f(t)

lim
t→∞

ctp
= lim

t→∞

f(t)

ctp
= 1

5 Final Remarks
This text exposed the importance of the Initial and Terminal Value Theorems and their gen-

eralizations for differential equations, especially for Laplace Transforms. Such results have also
been proven, which is uncommon to find in the literature (especially the generalizations).We hope
that this brief work contributes in the form of a complementary material for the study of Laplace
Transform and its applications.
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