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Calculation of Green’s function for Poisson’s equation on a
semi-disk using a Fourier transform in the radial variable
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Abstract. A new calculation of Green’s function for the problem with Poisson’s equation on a
semi-disk under mixed Dirichlet-Neumann boundary conditions is presented. The method consists
in first (a) employing a Fourier transform in the radial variable to calculate the solution of the
simpler problem that is obtained with the homogenization of the boundary conditions, and then
(b) inferring the desired Green’s function by comparing the expression of this calculated solution
with the one given by Green’s formula. The solution that the method yields is elaborated to the
point of having the same closed form that the method of images provides.
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1 Introduction

This work aims to present a new method for calculating the Green’s function for the problem
depicted in Figure 1, that is, for Poisson’s equation when the problem domain (2 is the semi-disk
shown in that figure and the boundary conditions are those indicated there: Dirichlet’s at the base
and Neumann’s on the circumference. This problem is formulated as follows:
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Figure 1: The boundary value problem for which Green’s function is calculated.

The Green’s function for this problem is found in Ref. [1], where it is calculated by the method
of imagens; it is given by eqs. (24) and (26) in that bibliographic reference:

G(r, 0,0 = L r? 4% — 2rr’ cos(0’ +0) n L 20 4 bt — 2021 cos(6' 4 0)
7 ’ 2 7«2 + 7’l2 — 2rr’ COS(QI — 0) 2 T27”'/2 + b4 _ 2b2TT/ COS(&’ o 0)

(2)
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Therefore, a specific objective of ours is to derive this Green’s function again, but by the method
presented in this work. In doing this, we reach the broader goal of fully explaining the method.

Section 2 describes the main steps of the method. Section 3 presents the application of the
method to calculate the Green’s function for problem (1). Section 4 ends the body of the paper
with final comments.

2 Description of the method applied to problem (1)

The method developed in this work takes advantage of the fact that the Green’s function of
problem (1) does not depend on the functions fy, fr, and h. Then, to calculate it, we may use the
following problem, which is a simplified version of problem (1), in which all boundary conditions
were homogenized:

0%v 1 0dv 1 0%v

2 = —_— —_—— _——_— =
vv(r’9>_8r2+r8r+r2392 h(r,0), r € (0,b), 6 € (0,7) . @
v(r,0) =v(r,m) =0, r € (0,b] ; %(b,@) =0, 0 (0,n).

a) The first step of the method is the calculation of the solution v to this problem. It is
convenient to use the variable p related to r as follows:

r=be” e€0,l] & p= —In(r/d) € [0,00) . (4)
Using the chain rule, we have
_ _ Ov ov ,0%v 9PV OV
U(T79): U(be pve): V(p70) = TE(TaH):_aip(pae) and r w: 87p2+57p .
Consequently, Poisson’s equation in (3) takes the simpler form
o’V 0%V
2172 2 —
r*Vu(r,0) = FrEl +ﬁ = r°h(r,0) = H(p,0) ,
and the homogeneous boundary conditions become
ov Ov
V(p,0) =v(r,0) = 0 and a—p(p,@)‘pzo = {—ra(ne)} = 0.
Therefore, problem (3) in terms of the variable p becomes
o?v.  9?V
— + — = H(p,0 0 .
57 T o (p,0), p€(0,00), 0 €(0,m) 5
ov
V(p,0) =V(p,m) =0, p€0,00); p (0,0) =0, 0€(0,n).
This problem is represented in Figure 2.
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Figure 2: The problem in (5).
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We see that, in the plane of p and 6, the problem domain takes the shape of a semi-infinite
slab; this fact and the homogeneous Neumann condition on the boundary at p = 0 justifies the use
of the following cosine Fourier transform to solve problem (5) for its solution V' (p,6):

a{wmm}=¢2Amvwﬁn%mmpzthm. (6)

b) The second step is the determination of the Green’s function for problem (1) from the
solution v(r 9)[ V( ,0)] of problem (3) calculated in the first step. Let us see how.

Since v(7 = [, G(F|F") h(F') dA" {cf. Ref. [2], eq.(1.42), which is here adapted to two
dlmensmns}, or, in terms of plane polar coordinates,

1 ™ b
U(T,e):_%/o d@’/o dr' v h(+', 0" G(r, 07", 0") ,

we see a possibility of inferring an expression for G(r,8|r’,0') by writing the already calculated
solution v(r, #) in the form of the double integral on the right side of the above equation. Actually,
it is better to perform this step using the p variable, that is, using the calculated V'(p, 6) instead
of v(r,#). In this variable the above equation becomes (we omit the variables of Green’s function,
simply denoting it by G, regardless of whether it is a function of r or p)

Vip, :_7/d0’/ —dp' '] r'h(r, G)G dO’/ dp'H(p',0") G . (7)
H(pfaf

We will see that this writing is not an automatic task, requiring some artifices in the first step
in order to put V(k,6) with a form that leads to that double integral.

c¢) A third step is still necessary to deduce (2), because in the second step we obtain an integral
representation for the Green’s function G. We need, therefore, to evaluate an integral to get G in
the closed form of (2).

3 Application of the method to calculate the Green’s function
for problem (1)

Now we apply the method to calculate the Green’s function of problem (1). We begin by
solving problem (3) employing the cosine Fourier transform defined in (6). Using it to transform
the partial differential equation in (5) (use is made of the formula for F.{f"}, given, for example,
in Ref. [3], sec.7.6) and taking into account the boundary condition at p = 0, we obtain

0
w%mﬂ?wﬁgﬂm}ﬂme%#w@ww@

We can solve this nonhomogeneous ordinary differential equation by using variation of param-
eters {cf. Ref. [4], sec.1.9}. Since the general solution of the associated homogeneous equation
is

Vi (k,0) = ¢, cosh kf 4 ¢y sinh k6 |

the form of a particular solution is given by

Vp(k,0) = A(6) cosh k6 + B(0) sinh ko | 9)
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where the functions A(f) and B(6) must be solutions of the system of equations

A’ coshkf + B'sinh k6 =0
kA’ sinh k0 + kB’ cosk6 = H

Solving it, we get

Hsi 1 /0
A'(6) :_%’69 = A®f) = _E/ H(k,0')sinh k0 do’ |
0
H cosh 1 /9
B'(0) = %’Co = B(§) = %/ H(k,0) cosh kO db' .
0

With the substitution of these results into (9), we obtain

_ cosh k6

sinh
VP(kve) = - k

k

0 0
_ L0 _
/ H(k,0')sinh k0'd0’ + / H(k,0") cosh ko'
0 0
17
= / H(k,0)sinh k(0" — 0)do’ .
0

The general solution Vi (k,8) + Vp(k,0) of (8) is then given by

_ 1 [9 _

V(k,0) = ¢q cosh kO + co sinh k6 — Z / H(k,0")sinh k(0" — 0)do’ , (10)

0

or, equivalently, with the lower limit of integration replaced by ,

_ 1 /9 _
V(k,0) = dy cosh k6 + dy sinh k6 — / H(k,0')sinh k(6' — 0) do’ . (11)

To determine ¢y, co, dy, and dy, we impose the two homogeneous Dirichlet conditions in (5).
To this end, we apply the cosine Fourier transform to them, obtaining

V(k,0)=V(km)=0 . (12)

Imposing these two conditions on the expression of V (k,#) which is given by (10), we get

_ _ 1 /7 _
V(h0) =1 =0 = V(kx) = cosinhr — E/ Ak, ) sinh k(0 — ) d0/ = 0
0

1

= =
“2 = Lsinhkr

/ H(k,0')sinh k(¢ — ) db’ |
0
whose substitution into (10) gives

_ sinh k@ [™ _ .
k,0) = ———— H(k,0')sinh k(0" —7)do' + — H(k,0")sinh k(6 — 0') do’
V() = it [ A0 sinh k@ ) do'+ & [ H 0 s (0 - 07) "
or

_ 1 T = N . /
V(k,0) - /0 d0' H(k,0") sinh k6 sinh k(0" — )

1 o ! 17 N .
+m/@ df' H(k,0")sinh krsinh k(6 —6.) | (13)
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where we used the definition
0~ () = the smaller (larger) of 6 and ¢’ . (14)

Imposing now the two conditions in (12) on equation (11), we obtain

_ 1 /0 _ 1 (™ _
V(k,0) =dy — E/ H(k,0')sinh k0 d0’ = dy = _E/ H(k,0')sinh k¢’ d§’ ;
T 0

_ h ™ _
V(k,7) = dy cosh b + dysinh k= dy — <OBET / H(k,0)sinh ko' d9' .
ksinhkm J,

The substitution of the two results into (11) gives

sinh k6 cosh kr

Vik,0) = - k sinh kr

hkO [T -
cosh k6 / H(k,0) sinh ko' d9’ +
0

/ H(k,0')sinh k0’ d9’
k 0

+%/ H(k,0)sinh k(0' — 0)do’ ,
0
or

_ 1 4 _
Vik,0) = ——— / d0'H (k,0") | — sinh km cosh k6 sinh k8’ + sinh k6 cosh kr sinh k6" |
ksinh km J,

1

—l—m/g d¢’ H(k,0')sinh krsinh k(6> —6.) . (15)

Equations (13) and (15) are two equivalent expressions for the cosine Fourier transform of the
solution V' (p,0) to problem (5), but they are not suitable to express V(p, ) in the form of the
double integral in (7). The reason is that in this double integral the interval of the integration
with respect to 6’ is [0, 7], and those two expressions contain integrations with respect to 6’ over
intervals other than [0, 7]. However, if we add (13) and (15) we get another equivalent expression
which does have the proper form:

(2ksinh k) V (k,0) =

/ d0'H (k,0") [ sinh k6 sinh k(" — ) — sinh km cosh k6 sinh k6’ + sinh k6 cosh kr sinh k6’|
0

+/ ¢’ H(k,0') sinh krsinh k(6> — 0.)
0

or
7 T (k0,0
k,0) = do' H(k,0)—1"~ 1
V(o) = [ a0 ) ) (16)
where
I'(k,0,0") = sinhkfsinh k(6’ — ) — sinh k7 cosh k6 sinh k6’ + sinh k6 cosh k7 sinh k6’
+ sinh k7 sinh k(05 —6.) . (17)

We now take the inverse cosine Fourier transform of (16), and also substitute the defining
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expression for H(k,0') = F.{H(p',0'}, obtaining
2 [ _ 2 [ , I'(k,0,0")
V(r,0) = \/;/0 dk {V(k,0)} coskp = \/;/0 dk{ do' [H(k,0")] 5% sinh o [ 8 kp
2 [ , (k,0,6)
\/;/0 dk{ de [\[/ dp' H(p', Q)COSkp]Qk:smhk coskp

_ dﬁ’/ dp H(p',0) / die = I'(k,6,0") cos kpcoskp'
ksinh k7

G

By comparing this result with (7), we infer that Green’s function is as indicated above by G.

However, this inferred expression for Green’s function is different from the one in (2). To match
them, it is necessary to evaluate the above integral with respect to k. But before that let us write
(17) in terms of . and 0~ only, that is, without the explicit presence of 6 or §':

I'(k,0,0") = sinh k6 [sinh k0’ cosh k7 — sinh km cosh k0'] — sinh km cosh k6 sinh k6’
+ sinh k6 cosh k7 sinh k6’ + sinh kr [sinh k0~ cosh k6~ — sinh k< cosh k6]

= sinh k0 sinh k0’ cosh k7 — sinh k6 sinh k7 cosh k6’ — sinh k7 cosh k6 sinh k0’ + sinh k6 cosh k7 sinh k6’
+ sinh k7 sinh k0~ cosh k6. — sinh k7 sinh k6 cosh k6~

= 2sinh k sinh k0’ cosh km — sinh k7 (sinh k6 cosh k6’ + cosh k6 sinh k6")
+ sinh k7 sinh k0~ cosh k6. — sinh k7 sinh k6 cosh k6~

= 2sinhk6 sinhkf’ coshkm — sinhknm sinhk (0 + 0) + sinhk7 sinhkfs coshkf« — sinhkn sinhkf. coshkf-
= 2sinhkf< sinhkfs coshkm — sinhkn sinhk (0> + 0<) + sinhkw sinhkf> coshkf« — sinhkm sinhkf< coshk6-
= 2sinh k6. sinh kO~ cosh km — sinh kw(w + sinh kO« cosh k6-.)

+ sinh kww — sinh k7 sinh k0~ cosh k6~

= 2sinh kO« sinh kO~ cosh kr — 2sinh k7 sinh k0« cosh k> = —2sinh kO« sinh k(7 — 05) .

G:/ 4 sinh k6 sinh k(7w — 6) cos kp cos kp' dk (18)

ksinh kn

Let us obtain G in the form of (2) from the above result. We start with an usual application
of the residue theorem. Writing the above integral (of an even function) in the complex k plane as
half of its extension to the whole k-axis, closing the path with a circumference of radius which goes
to oo, and evaluating the residues at the simple poles of the integrand inside the closed contour,
that is, at the zeros ni (n = 1,2,3,---) of ksinh kr (k = 0 is a removable singularity), that theorem
allows us to write

1 .~ .. k—in 2coskpcoskp 2sinhkf.sinhk(r —6)
G = - 27 lim —
2 k> in sinh k7 k

n=

B i 1 [2 coshnp coshnp'] [2isinnf. - isinn(m — 65)]
T COSNT in

/

;if: Oy (0) -+ ()

2.\n
r + (L) }251nn9< sinn(r —0s) , (19)

rr!

where in the last step we used (4) to go back to the variables r and 7.
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Now we calculate the sum of this infinite series. To this end, we establish the following formula:

= (=D)L RN, 1. R?+ B%2+2RBcos(¢' — ¢)
B) = — (=) 2 =-1 .
S-(RB)=), — (B) snng s ng = 5 M e S RBos(@ 1 0)

(20)

This infinite series without the factor (—1)"*! in its general term has its sum calculated in Ref.
[1]: check eqs. (5) and (7). We can derive (20) by modifying the calculation performed there
[notice the typo in eq. (6): it should be o (¢’ — 6) — o (6’ + )] with only the addition of this factor.
Setting 2 = (R/B) ¢'¥, we have

o_(p) = i #(%)nmsmp: — i (_i)nRez” :Re/oz [i(—()"]d{
n=0

n=1 n=1

* d 1
:Re/ chzReln(l+z):—ln|1+z|ziln[R2+B2+2BRcos<p}—lnB.
0

_1\n+1 n
(i (g) [cosn(¢' — @) —cosn(¢ + ¢)] =0 (¢ —¢) — 0 (¢ +¢)

n

R? 4+ B* 4+ 2BRcos(¢/ — ¢)] — %m [R* + B® + 2BRcos(¢' + ¢)] v

n
Looking at (19), we see that we have to use (20) with the parameters ¢’ and ¢ respectively
equal to . and m — 6~ , in which case cos(¢’ + ¢) = —cos(6’ F 6). Also noticing the property
S_(R,B) = S_(B, R), we can finally express G in exactly the same form as (2):

25 (r,7)+25_(rr',b?) 11 P22 = 2rr’ cos(0/4+0) 1. r2r% 4 bt — 20201’ cos(6 +6)

1

G

n n
2 2 242 2rr cos(0/—0) 2 r2r/% 4 bt — 20217 cos(6 —0)

4 Final Comments

We used Green’s formula in (7) with the factor (2m)~! so that our calculations would lead to
exactly the same Green’s function expression in (2) (deduced in Ref. [1]). Some authors, however,
prefer this factor showing up in Green’s function (and not in Green’s formula); for example, compare
eqs. (1.15b), (1.16), (1.17), and (1.22) in ch. 4 of Ref. [5] with eqs. (17) and (18) in Ref. [1].

The method can be applied in the case of other boundary conditions. Furthermore, it is not
restricted to a semi-disk: the domain can be a generic circular sector (in which case the application
of the method of images would no longer be simple).
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