## Proceeding Series of the Brazilian Society of Computational and Applied Mathematics Preprint

## FSS Bioinspiradas na Espiral de Baravelle

Rodrigo B. Moreira, Valeriano A. de Oliveira

Universidade Estadual Paulista (Unesp), Instituto de Biociências, Letras e Ciências Exatas, Departamento de Matemática, Câmpus de São José do Rio Preto, SP

Alexandre J. R. Serres<sup>3</sup>

DEE/UFCG, Campina Grande, PB

Guilherme W. Pereira, Robson H. C. Maniçoba,

DCT/UESB, Jequié, BA

As Superfícies Seletivas em Frequência (Frequency Selective Surfaces - FSS) funcionam como filtros de frequências, são constituídas de elementos, majoritariamente de metal, dispostos periodicamente sobre uma camada de dielétrico (isolante elétrico) e possui aplicações como: forno micro-ondas, janelas inteligentes e redes sem fio (GPS, WIFI, 4G e 5G) [1, 3, 4].

Neste trabalho apresentamos uma FSS simples bioinspirada na espiral de Baravelle. A motivação pela utilização desta geometria está em [3], onde os autores propuseram uma estrutura com a configuração das Figs. 1 (a), (b) e (c) e potencial de aplicações em WLAN (*Wireless Local Area Network*). Vamos convencionar que a Fig. 1 (a) tem Nível 0, a Fig. 1 (b) tem Nível 1, a Fig. 1 (c) tem Nível 2 e, dando sequência ao padrão estabelecido, a Fig 1 (d) tem Nível 14.

A célula unitária da FSS proposta pode ser vista na Fig. 1 (d). Ela foi desenvolvida em ambiente virtual, tornando-se ambição futura sua criação física. A análise de desempenho da estrutura foi produzida por meio do Método dos Momentos (MoM), implementado no software Scilab (o GeoGebra também foi usado e teve o papel de facilitador da compreensão geométrica da espiral). A escolha da espiral de Baravelle no Nível 14 e do material para a estrutura foi fruto de resultados obtidos por diversos testes empíricos feitos em simulação computacional.

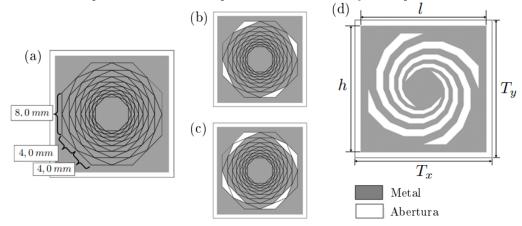



Figura 1: (a) FSS no Nível 0. (b) FSS no Nível 1. (c) FSS no Nível 2. (d) FSS no Nível 14; Periodicidade:  $T_x = T_y = 16, 3 \ mm$ ; Dimensões:  $l = h = 22, 0 \ mm$ ; Tipo do material dielétrico: ROGERS 3010, com espessura de 1,28 mm, permissividade elétrica de 10,2 F/m e tangente de perda igual a 0,0035.

<sup>&</sup>lt;sup>1</sup>rodrigo.barbosa@unesp.br

<sup>&</sup>lt;sup>2</sup>valeriano.oliveira@unesp.br

<sup>&</sup>lt;sup>3</sup>alexandreserres@dee.ufcg.edu.br

 $<sup>^4</sup>$ guiwalper@gmail.com

<sup>&</sup>lt;sup>5</sup>rhcmanicoba@uesb.edu.br

2

O Nível de Referência (NR) para transmissão considerado na análises de desempenho da FSS foi -10 dB. Os resultados expostos no gráfico da Fig. 2 evidenciam o comportamento ressoante que a estrutura apresenta. Quando tomado um ângulo de incidência  $\theta=0^\circ$  (ângulo de incidência normal), foram detectadas três bandas de atuação, duas estreitas nas faixas de 1,4 - 1,9 GHz e 5,0 - 5,7 GHz e outra em 2,5 - 3,6 GHz. Para mais detalhes veja as Larguras de Bandas (LB) na Fig. 2. Uma segunda abordagem foi feita no intuito de investigar a sensibilidade da FSS quanto a variação do ângulo de incidência. As simulações ocorreram para  $\theta \in \{0^\circ, 10^\circ, 20^\circ, 30^\circ, 40^\circ\}$  e os resultados encontram-se dispostos na Fig. 2.

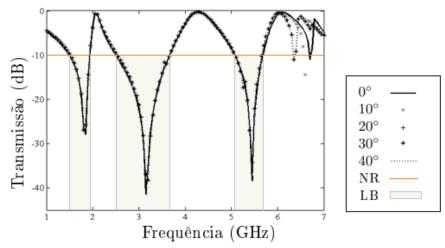



Figura 2: Resultados de transmissão com variação angular para a FSS no Nível 14.

A partir dos resultados obtidos pode-se afirmar que a FSS proposta apresenta independência angular, uma vez que os dados de transmissão são quase coincidentes no recorte onde as faixas LB estão localizada para  $\theta = 0^{\circ}, 10^{\circ}, 20^{\circ}, 30^{\circ}$  e  $40^{\circ}$ . Além disso, ela pode ser usada em aplicações que usam os canais entre 2, 5 - 3, 6 GHz, que é o caso do 5G, como visto em [2].

## Agradecimentos

Este trabalho foi parcialmente financiado pela Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), processo 2013/07375-0, e pela Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001.

## Referências

- A. L. P. S. Campos. Superfícies Seletivas em Frequência: análise e projeto. Natal: IFRN Editora, 2008.
- [2] J. F. Mologni et al. "Investigation on the deployment of FSS as electromagnetic shielding for 5G devices". Em: 2017 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC) (2017), pp. 1–5. DOI: 10.1109/IMOC.2017.8121114...
- [3] R. B. Moreira, A. F. Dos Santos e R. H. C Maniçoba. "A compact and stable frequency selective surface for WLAN applications". Em: International Journal of Computer Applications 7 (2017), pp. 1–3. DOI: 10.5120/ijca2017914056.
- [4] B. A Munk. Frequency Selective Surfaces: theory and design. New York: Wiley, 2000.