
Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Preprint

On the Delayed Weighted Gradient Method with

Simultaneous Step-Size Search

Hugo Lara Urdaneta 1

Federal University of Santa Catarina, Department of Control and Automation Engineering and Comput-

ing, Blumenau, Brazil

Rafael Aleixo 2

Federal University of Santa Catarina, Department of Mathematics, Blumenau, Brazil

Abstract. In this article it is presented a two step �rst order algorithm, based on bidimensional
minimization, to deal with convex quadratic optimization problems. Our analysis show linear
convergence and A-orthogonality of the gradient iterates. Numerical experimentation show the
e�ectiveness of our method.
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1 Introduction

The gradient methods play a key role in optimization techniques. Cauchy developed the �rst
methodology for unconstrained optimization, the well-known Steepest Descent Method [4]. Two
features o the method are worth mentioning. Simplicity and low cost per iteration where only gra-
dient information is required is the �rst one, while a very slow rate of convergence is the second one.
These two con�icting characteristics motivate a great amount of work in the attempt of balancing
them by using only gradient information at the same time that its convergence is accelerated. Low
cost gradient methods that have widely been e�ective were proposed in literature (see for instance
[7, 14] and references therein). The gradient methods for unconstrained minimization problem

minimizex∈Rn f(x)

generate a sequence of solution approximations xk satisfying xk+1 = xk−αkgk where f : Rn → R is
continuously di�erentiable, gk = ∇f(xk) and αk > 0. The selection of the step length αk depends
on the chosen method. Among the choices we shall mention the classical SD (steepest descent)
which was proposed by Cauchy to solve nonlinear systems of equations. In this case,

αSDk = argminα f(xk − αgk). (1)

Instead of minimizing the objective function, the minimum gradient step length (MG) aims to
minimize the norm of the gradient at the next step

αMG
k = argminα‖∇f(xk − αgk)‖2. (2)

Assuming the objective function f to be a strictly convex quadratic function, that is, for a
symmetric and positive de�nite (SPD) matrix A ∈ Rn×n, the unconstrained optimization problem
becomes

minimizex∈Rn f(x) =
1

2
xTAx− bTx. (3)
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Under this assumption, simple calculations on (1) and (2) give

αSDk =
gTk gk
gTk Agk

and αMG
k =

gTk Agk
gTk A

2gk
.

In order to overcome the slow convergence of gradient methods with the former step lengths,
several other choices were proposed in literature, for instance [3, 9�11].

Recently, Oviedo-Leon [13] proposed the Delayed Weighted Gradient Method (DWGM) with
the same objective, to overcome the poor performance of the Gradient Methods. DWGM is a
two-step gradient method that combines smoothing and delaying techniques to accelerate the
convergence, while avoiding the well-known zigzagging behaviour of the gradient methods. Each of
the two DWGM step sizes are calculated sequentially, so the �rst step-size information is necessary
to calculate the second one. Andreani and Raydan [1] demonstrated several important properties
of DWGM, including the �nite termination of the method, in exact arithmetics. In short, DWGM
can outperform the conjugate gradient method [1, 13] and, therefore, it is a candidate method for
practical problems. In this article we develop a two-step gradient method where both step-sizes
are simulteneously calculated as optimal solutions of a bidimensional optimization problem.

Now we brie�y describe the DWGM algorithm [13], and establish some of its properties. We con-
sider the strictly convex quadratic minimization problem (3). Since the gradient g(x) ≡ ∇f(x) =
Ax − b, then the unique global solution A−1b for the problem (3) also solves the linear system
Ax = b. For large n, many low cost iterative methods have been proposed and analyzed. The so-
called gradient type methods emerge as competitive choices since they show fast linear convergence
(see [2, 5, 7, 12]).

From a starting point x0 ∈ Rn, consider gk = g(xk). The well-known minimum gradient
method (see [2]) is given by the iteration xk+1 = xk − αMG

k gk, where α
MG
k = gTk wk/‖wk‖22 and

wk = Agk. Here, the step-size is de�ned as αk = argminα>0 ‖∇f(xk − αgk)‖2. It is easy to check
that αk = argminα>0 ‖gk − αwk‖2, which leads to the expression above. The minimum gradient
norm method calculates the next iterate as the point alongside the current gradient at which the
norm of the next gradient is minimized. As a two step gradient method, DWGM incorporates a
delaying step de�ned as follows [13]: The �rst stage uses the ordinary minimum gradient point

yk = xk − αMG
k gk.

Then, calculates the next iterate as

xk+1 = xk−1 + βk(yk − xk−1),

where βk = gTk−1(gk−1 − rk)/‖gk−1 − rk‖22. The step size is de�ned by

βk = argminβ∈R ‖∇f(xk−1 + β(yk − xk−1))‖2.

It is straightforward to see that ∇f(xk−1+β(yk−xk−1)) = gk−1−β(gk−1−rk), for rk = gk−αkwk.
This leads to βk = argminβ∈R ‖gk−1−β(gk−1− rk)‖2 = gTk−1(gk−1− rk)/‖gk−1− rk‖22. By merging
the de�nition of yk into xk+1 and simple manipulation, the next iterate can be rewritten as xk+1 =
(1− βk)xk−1 + βkxk − βkαkgk.

Some of the properties that DWGM enjoys, established in [1, 13] include the non negativity
of βk for all k, the monotonic decreasing of {‖gk‖2} as well as the q-linear convergence of {gk} to
zero when k goes to in�nity (which implies that {xk} converges to the unique global minimizer of
f), and �nite convergence by using A-orthogonality of the gradient vector at the current iteration
with all previous gradient vectors.

The remainder of the article is organized as follows: In the next section we describe our two
step-size gradient method, and analyze the convergence. Section 3 is devoted to numerical experi-
mentation, and at the last section some concluding remarks are o�ered.
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2 Another Two Step-Size Gradient Method

In this section we develop our algorithm de�ning step sizes by wielding optimization arguments.
Consider the problem (3) and iterates xk−1, xk. Let us denote gk = Axk − b, wk = Agk, yk(α) =
xk − αgk and rk(α) = gk − αwk. To build our iteration, like DWGM, we de�ne the delaying step
by xk+1(α, β) = xk−1 + β(yk(α)− xk−1). We choose algorithmic values for α and β in a way that
θ(α, β) := ‖∇f(xk+1 (α, β))‖2 is minimized. To this aim, observe that since

∇f(xk+1(α, β)) = gk−1 + β(rk(α)− gk−1), (4)

we have θ(α, β) = ‖gk−1 + β(rk(α) − gk−1)‖2, and by the �rst order optimality conditions, we
obtain

∂θ

∂α
= −2[gk−1 + β(rk(α)− gk−1)]Twk = 0, (5)

∂θ

∂β
= 2[gk−1 + β(rk(α)− gk−1)]T (rk(α)− gk−1) = 0. (6)

From the equation (5) we get gTk−1wk + β(gk − gk−1)Twk − αβwTk wk = 0 obtaining

αβ =
gTk−1wk

wTk wk
+ β

(gk − gk−1)Twk
wTk wk

, (7)

and so,

α =
gTk−1wk

βwTk wk
+

(gk − gk−1)Twk
wTk wk

. (8)

The equation (6) leads to

gTk−1(gk−gk−1)+β(gk−gk−1)T (gk−gk−1)−αgTk−1wk−2αβ(gk−gk−1)Twk+α2βwTk wk = 0. (9)

For simplicity, denote b = gTk−1(gk − gk−1), c = gTk−1wk, d = ‖gk − gk−1‖22, e = (gk − gk−1)Twk,
and f = ‖wk‖22, so equation (9) becomes

b− αc+ βd− 2αβe+ α2βf = 0. (10)

The expressions (7) and (8) written in the notation above lead to αβ = c
f + β ef and α = c

βf + e
f ,

and merging these expressions in (10) we obtain for β 6= 0(
b− ce

f

)
+ β

(
d− e2

f

)
= 0,

which implies that β = ce−bf
df−e2 . Now, by merging it in (8), we obtain α = cd−be

ce−bf . Returning to the
original notation, and using pk = gk − gk−1 we have

αk =
gTk−1wk‖pk‖22 − gTk−1pkpTkwk
gTk−1wkp

T
kwk − gTk−1pk‖wk‖22

and βk =
gTk−1wkp

T
kwk − gTk−1pk‖wk‖22

‖pk‖22‖wk‖22 − (pTkwk)
2

.

We call the algorithm bidimensional delayed weighted gradient method or BiDWGM. We sum-
marize it in Algorithm 1. Below we present the convergence analysis and some properties of
BiWDGM.
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Algorithm 1 BiDWGM

Require: A ∈ Rn×n SPD, x0 ∈ Rn, x−1, g−1 = g(x−1), ε > 0.

1: w−1 = Ag−1; x0 = x−1 −
gT−1w−1

‖w−1‖2
g−1; g0 = g(x0);

2: k = 0;

3: while ‖gk‖2 > ε do

4: wk = Agk; pk = gk − gk−1;
5: bk = gTk−1pk; ck = gTk−1wk; dk = pTk pk; ek = pTkwk; fk = wTk wk;

6: αk =
ckdk − bkek
ckek − bkfk

; βk =
ckek − bkfk
dkfk − e2k

;

7: yk = xk − αkgk; rk = gk − αkwk;
8: xk+1 = xk−1 + βk(yk − xk−1); gk+1 = gk−1 + βk(rk − gk−1);
9: k = k + 1;

10: end while

Lemma 2.1. Let {xk} be a sequence generated by the Algorithm 1. Then {‖gk‖} is a monotonically
decreasing sequence.

Proof. First observe from (4) that gk+1(αk, βk) = gk+1, gk+1(0, 1) = gk and gk+1(α, 1) = rk(α).
Then, the optimality of the pair (αk, βk) implies ‖gk+1(αk, βk)‖ ≤ ‖gk+1(α, 1)‖, for any α. In

particular, for αMG
k =

gTk wk

wT
k wk

we obtain

‖gk+1‖ ≤ ‖rk(αMG
k )‖.

On the other hand, we can prove that

‖rk(αMG
k )‖2 = ‖gk − αMG

k wk‖2 = ‖gk‖2 −
(gTk wk)

2

‖wk‖2
< ‖gk‖2

because gTk wk > 0. This leads to
‖gk+1‖ < ‖gk‖ (11)

that is, {‖gk‖} decreases monotonously.

Lemma 2.2. Let βk the parameter de�ned in Algorithm 1. Then for each k ∈ IN,

0 < βk ≤
1

2

(
1 +

‖gk−1‖2

‖gk−1 − rk(αk)‖2

)
Proof. We �rst see the non negativity of βk. From (6) we have

gTk−1rk(αk) = ‖gk−1‖2 − βk‖gk−1 − rk(αk)‖2. (12)

It follows from Cauchy-Schwarz inequality and Lemma 2.1 and (11) that

gTk−1rk(αk) ≤ ‖gk−1‖‖rk(αk)‖ < ‖gk−1‖‖gk‖ < ‖gk−1‖2.

In view of the last expression and (12) we obtain βk > 0 ∀k ∈ IN . Finally, by using the well-known
inequality uT v ≤ 1

2 (‖u‖
2 + ‖v‖2) we arrive at

βk ≤
1

2

(
1 +

‖gk−1‖2

‖gk−1 − rk(αk)‖2

)
which proves the lemma.
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Lemma 2.3. In Algorithm 1, it follows for k = 0, 1, 2, . . .

1. rk(αk)
TAgk =

(
1− 1

βk

)
gTk−1Agk.

2. rk(αk)
T rk(αk)− rk(αk)T gk = −αk

(
1− 1

β k

)
gTk−1Agk.

3. gTk+1rk(αk) = gTk+1gk−1.

4. gTk+1Agk = 0.

Proof. 1. For steps 4 and 7 of Algorithm 1, and (8) we have

rk(αk)
TAgk = (gk−αkwk)Twk = gTk wk−

[
gTk−1wk

βk
+ (gk − gk−1)Twk

]
=

(
1− 1

βk

)
gTk−1wk.

2. Again by step 7 of the algorithm, and item 1, we get

rk(αk)
T (rk(αk)− gk) = −αkrk(αk)Twk = −αk

(
1− 1

βk

)
gTk−1wk.

3. By (6) and step 8 of the algorithm we obtain

gTk+1(rk(αk)− gk−1) = [gk−1 + βk(rk(αk)− gk−1)]T (rk(αk)− gk−1)
= gTk−1(rk(αk)− gk−1) + βk‖rk(αk)− gk−1‖2 = 0.

4. From item 1 and step 8 we obtain

gTk+1Agk = [gk−1 + βk(rk(αk)− gk−1)]Twk = (1− βk)gTk−1wk + βkrk(αk)
Twk

= (1− βk)gTk−1wk + βk

(
1− 1

βk

)
gTk−1wk = 0.

Theorem 2.1. Let {xk} be a sequence generated by Algorithm 1, and λ1, λ2, . . . , λn > 0 the
eigenvalues of the matrix square root of A (i.e. A1/2). Then the sequence {gk} converges to zero
Q linearly with convergence factor λ1−λn

λ1+λn
.

Proof. From Lemma 2.1 we have that {‖gk‖} is monotonically decreasing, and bounded by zero.
Then, {‖gk‖} is convergent. On the other hand, note that, from (8)

‖rk(αk)‖2 = ‖gk‖2 − 2αkg
T
k wk + α2

k‖wk‖2 = ‖gk‖2 −
(gTk wk)

2

‖wk‖2
.

The last equality comes from the part 4 of the lemma above. We can write

‖rk(αk)‖2 = ‖gk‖2 −
(gTk wk)

‖wk‖2
(gTk wk)

‖gk‖2
‖gk‖2 =

[
1− (gTk wk)

‖wk‖2
(gTk wk)

‖gk‖2

]
‖gk‖2.

We denote vk = A−1/2gk and rewrite

(gTk wk)

‖wk‖2
(gTk wk)

‖gk‖2
=

(vTk vk)
2

(vTk Avk)(v
T
k A
−1vk)

.

By using the Kantorovich inequality to this expression, and merging the result in the former we get

‖rk(αk)‖ ≤
(
λ1−λn

λ1+λn

)
‖gk‖. Now noting that, from (11) we have ‖gk+1‖ ≤ ‖rk(αk)‖, we immediately

conclude that {gk} converges to zero Q-linearly with convergence factor λ1−λn

λ1+λn
and hence, since A

is positive de�nite, we also conclude that {xk} tends to the unique minimizer of f when k goes to
in�nity.
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Figure 1: Performance pro�les.

Remark: From part 4 of Lemma 2.3, gTk−1wk = 0. It means that,

αk =
gTk−1wk‖pk‖22 − gTk−1pkpTkwk
gTk−1wkp

T
kwk − gTk−1pk‖wk‖22

=
−gTk−1pkpTkwk
−gTk−1pk‖wk‖22

=
pTkwk
‖wk‖22

=
gTk wk
‖wk‖22

= αMGk .

On the other hand, (6) directly implies,

βk =
gTk−1(gk−1 − rk(α))
‖gk−1 − rk(α)‖22

= βDWGMk .

That is, for the convex quadratic minimization problem (3), BiDWGM and DWGM are mathe-
matically equivalent.

3 Numerical Experiments

In this section we present some numerical experiments. The objective is to evaluate the nu-
merical behaviour of the BiDWGM algorithm. All the experiments were performed on a intel(R)
CORE(TM) i7-4770, CPU 3.40 GHz with 16 GB RAM. In order to verify the equivalence between
DWGM and BiDWGM we propose an experiment with real data obtained from the SuiteSparse
Matrix Collection [6]. We perform a comparison between DWGM and BiDWGM.

We obtained for our numerical tests seventy positive de�nite matrices from the SuiteSparse
Matrix Collection. Then we solved the resulting seventy linear systems Ax = b with the DWGM
and BiDWGM algorithms with b = [1, 1, . . . , 1]T and x0 = [0, 0, . . . , 0]T . The stopping criterium
used is ‖gk‖2 6 10−5. A comparison between the performance [8] of DWGM and BiDWGM is done
on Figure 1. We observe that DWGM and BiDWGM have a similar performance, this is a simple
consequence of the equivalence between the algorithms demonstrated above. Same behaviour is
observed when we compare CPU times.

4 Conclusions

The delayed weighted gradient method is a two-step gradient method that promotes a conver-
gence acceleration of the gradient method. In this work, we have derived, via a two-dimensional
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optimization, a new two-step gradient method called BiDWGM. We also have proved some prop-
erties of the new algorithm, and its global convergence. In spite to be developed from di�erent
theoretical arguments, the methods BiDWGM and DWGM are equivalent. This claim is supported
by theoretical arguments as well as by the numerical experiments. Such equivalence is true for
convex quadratic optimization problems, but if applied to more general convex problems, both
arguments yield di�erent procedures, which will be the focus of our future work.
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