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Abstract: In this work some aspects on chaotic behavior and minimality in planar disconti-
nuous vector fields are treated. The occurrence of non-deterministic chaos is observed and the
concept of minimality and orientable minimality are introduced. We also investigated some re-
lations between minimality and orientable minimality and observed the existence of new kinds
of non-trivial minimal sets in chaotic systems. The approach is geometrical and involve the
ordinary techniques of the discontinuous dynamical systems theory.
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1 Setting the problem

Discontinuous vector fields (DVFs, for short) have become certainly one of the common frontiers
between Mathematics and Physics or Engineering. Many authors have contributed to the study
of DVFs (see for instance the pioneering work [4] or the didactic works [1, 7], and references
therein about details of these multi-valued vector fields). In our approach Filippov’s convention
is considered. So, the vector field of the model is discontinuous across a switching manifold and
it is possible for its trajectories to be confined onto the switching manifold itself. The occurrence
of such behavior, known as sliding motion, has been reported in a wide range of applications.
We can find important examples in electrical circuits having switches, in mechanical devices in
which components collide into each other, in problems with friction, sliding or squealing, among
others.

For planar smooth vector fields there is a very developed theory nowadays, mainly in the
planar case. In such environment, questions about chaotic behaviour and minimality, for ins-
tance, are complety answered. Indeed, the Jordan curve theorem assures that there is no chaotic
behaviour in planar systems and the Poincaré-Bendixson theorem says that for a given flow the
minimal sets are just equilibria or limit cycles. Nevertheless, in higher dimension, while mi-
nimal sets are described by the Denjoy-Schwartz theorem (under some suitable hypothesis −
see [6]), chaotic systems are massively studied and a final theory is far away from be reached.
Nevertheless, a very interesting and useful subject is to study these kind of objects in the DVF’s
scenario. Furthermore, we must observe that chaotic behaviour and non-trivial minimality have
been understudied in the DVF’s literature.

The specific topic addressed in this work concerns with the occurrence of chaos in planar
DVFs and the existence of non-trivial minimal sets in DVFs. As long as the authors know, a
first study about the minimal set theory for DVFs and a discussion about the validity of the
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Poincaré-Bendixson theorem for DVFs is given only in their paper [2]. Following the approach
in [2], here we present some special DVFs and prove the existence of compact invariant sets
with chaotic flow. Actually, these sets will be non-trivial minimal sets having no symmetry. We
also propose definitions of minimal sets for positive (and negative) flow of DVFs (or orientable
minimality) and study some relations between them and the definition of minimal set stablished
in [2]. With these new definitions we analyze the occurrence of new kind of non-trivial minimal
sets for DVFs defined in R

2.

2 Preliminary definitions and support results

Let V be an arbitrarily small neighborhood of 0 ∈ R
2 and consider a codimension one manifold

Σ of R
2 given by Σ = f−1(0), where f : V → R is a smooth function having 0 ∈ R as a

regular value (i.e. ∇f(p) 6= 0, for any p ∈ f−1(0)). We call Σ the switching manifold that is
the separating boundary of the regions Σ+ = {q ∈ V | f(q) ≥ 0} and Σ− = {q ∈ V | f(q) ≤ 0}.
Observe that we can assume, locally around the origin of R2, that f(x, y) = y.

Designate by χ the space of Cr-vector fields on V ⊂ R
2, with r ≥ 1 large enough for our

purposes. Call Ω the space of vector fields Z : V → R
2 such that

Z(x, y) =

{
X(x, y), for (x, y) ∈ Σ+,
Y (x, y), for (x, y) ∈ Σ−,

(1)

where X = (X1,X2), Y = (Y1, Y2) ∈ χ. The trajectories of Z are solutions of q̇ = Z(q) and we
accept it to be multi-valued at points of Σ. The basic results of differential equations in this
context were stated by Filippov in [4], that we summarize next. Indeed, consider Lie derivatives

X.f(p) = 〈∇f(p),X(p)〉 and Xi.f(p) =
〈
∇Xi−1.f(p),X(p)

〉
, i ≥ 2

where 〈., .〉 is the usual inner product in R
2.

We distinguish the following regions on the discontinuity set Σ:

(i) Σc ⊆ Σ is the sewing region if (X.f)(Y.f) > 0 on Σc .

(ii) Σe ⊆ Σ is the escaping region if (X.f) > 0 and (Y.f) < 0 on Σe.

(iii) Σs ⊆ Σ is the sliding region if (X.f) < 0 and (Y.f) > 0 on Σs.

In what follows we present the definition of local and global trajectories for DVFs. Before
that, we remark that a tangency point of system (1) is characterized by (X.f(q))(Y.f(q)) = 0. If
there exist a characteristic orbit of the vectors fields X or Y reaching q in a finite time, then such
tangency is called a visible tangency. Otherwise we call q an invisible tangency. In addition, a
tangency point p is singular if p is a invisible tangency for both X and Y . On the other hand,
a tangential singularity p is regular if it is not singular.

The definition of local trajectory can also be found in [5].

Definition 1. The local trajectory (orbit) φZ(t, p) of a DVF given by (1) is defined as follows:

• For p ∈ Σ+\Σ and p ∈ Σ−\Σ the trajectory is given by φZ(t, p) = φX(t, p) and φZ(t, p) =
φY (t, p) respectively, where t ∈ I.

• For p ∈ Σc such that X.f(p) > 0, Y.f(p) > 0 and taking the origin of time at p, the
trajectory is defined as φZ(t, p) = φY (t, p) for t ∈ I ∩ {t ≤ 0} and φZ(t, p) = φX(t, p)
for t ∈ I ∩ {t ≥ 0}. For the case X.f(p) < 0 and Y.f(p) < 0 the definition is the same
reversing time.

• For p ∈ Σe and taking the origin of time at p, the trajectory is defined as φZ(t, p) =
φZΣ(t, p) for t ∈ I ∩ {t ≤ 0} and φZ(t, p) is either φX(t, p) or φY (t, p) or φZΣ(t, p) for
t ∈ I ∩ {t ≥ 0}. For the case p ∈ Σs the definition is the same reversing time.
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• For p a regular tangency point and taking the origin of time at p, the trajectory is defined
as φZ(t, p) = φ1(t, p) for t ∈ I ∩ {t ≤ 0} and φZ(t, p) = φ2(t, p) for t ∈ I ∩ {t ≥ 0}, where
each φ1, φ2 is either φX or φY or φZΣ.

• For p a singular tangency point φZ(t, p) = p for all t ∈ R.

The next definitions was stated in [2].

Definition 2. A global trajectory (orbit) ΓZ(t, p0) of Z ∈ χ passing through p0 is a union

ΓZ(t, p0) =
⋃

i∈Z

{σi(t, pi); ti ≤ t ≤ ti+1}

of preserving-orientation local trajectories σi(t, pi) satisfying σi(ti+1, pi) = σi+1(ti+1, pi+1) =
pi+1 and ti → ±∞ as i → ±∞. A global trajectory is a positive (respectively, negative) global
trajectory if i ∈ N (respectively, −i ∈ N) and t0 = 0.

In what follows we present the definitions of invariance and minimality.

Definition 3. A set A ⊂ R
2 is Z-invariant (respectively, Z-positively/negatively invari-

ant) if for each p ∈ A and all global trajectory ΓZ(t, p) (respectively, positive/negatively global
trajectory Γ±

Z (t, p)) passing through p it holds ΓZ(t, p) ⊂ A (respectively, Γ±

Z (t, p) ⊂ A).

Remark 1. It follows directly from Definiton 3 that a given set is invariant if and only if it is
Z-positively and Z-negatively invariant.

Definition 4. Consider Z ∈ Ω. A set M ⊂ R
2 is Z-minimal (respectively, Z-positively/ne-

gatively minimal) if

(i) M 6= ∅;

(ii) M is compact;

(iii) M is Z-invariant (respectively, Z-positively/negatively invariant);

(iv) M does not contain proper subset satisfying (i), (ii) and (iii).

The following lemma is a trivial consequence of Definition 4.

Lemma 1. Consider M ∈ R
2 and Z a DVF. If M is Z-positively minimal and Z-negatively

minimal, then M is Z-minimal.

Proof. In fact, since M is Z-positively minimal and Z-negatively minimal, then M is a non-
empty compact set and from Remark 1 M is Z-invariant and does not contain a proper non-
empty compact Z-invariant subset.

In what follows we introduce some definitions concerning objects from the ergodic theory
into de context of DVFs.

Definition 5. System (1) is topologically transitive on an invariant set W if for every pair of
nonempty, open sets U and V in W , there exist q ∈ U , Γ+

Z (t, q) a positive global trajectory and
t0 > 0 such that Γ+

Z (t0, q) ∈ V .

Definition 6. System (1) exhibits sensitive dependence on a compact invariant set W if there
is a fixed r > 0 satisfying r < diam(W ) such that for each x ∈ W and ε > 0 there exist a
y ∈ Bε(x)∩W and positive global trajectories Γ+

x and Γ+
y passing through x and y, respectively,

satisfying
dH(Γ+

x ,Γ
+
y ) = sup

a∈Γ
+
x ,b∈Γ

+
y

d(a, b) > r,

where diam(W ) is the diameter of W and d is the Euclidean distance.
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As observed in [3], the two previous definitions coincide for single-valued flows, making this
a natural extension for a set-valued flow. Now we define a non-deterministic chaotic set:

Definition 7. System (1) is chaotic on a compact invariant set W if it is topologically transitive
and exhibits sensitive dependence on W .

3 Results

Finding limit sets of trajectories of vector fields is one of the most important tasks of the
qualitative theory of dynamical systems. In the literature there are several recent papers where
the authors explicitly exhibit the phase portraits of some DVFs with their unfoldings. However,
all the limit sets exhibited have trivial minimal sets (i.e., the minimal sets are equilibria, pseudo
equilibria, cycles or pseudo-cycles). At this section we present some examples of non-trivial
minimal set and chaotic DVFs.

Example 1. Consider Z = (X,Y ) ∈ Ω, where X(x, y) = (1,−2x), Y (x, y) = (−2, 4x3 − 2x)
and Σ = f−1(0) = {(x, y) ∈ R

2; y = 0}. The parametric equation for the integral curves of
X and Y with initial conditions (x(0), y(0)) = (0, k+) and (x(0), y(0)) = (0, k−), respectively,
are known and its algebraic expressions are given by y = −x2 + k+ and y = x4/2 − x2/2 + k−,
respectively. It is easy to see that p = (0, 0) is an invisible tangency point of X and a visible
one of Y . It is also easy to note that the points p± = (±

√
2/2, 0) are both invisible tangency

points of Y . Note that between p− and p there exists an escaping region and between p and p+
a sliding one. Further, every point between (−1, 0) and p− or between p+ and (1, 0) belong to a
sewing region. Consider now the particular trajectories of X and Y for the cases when k+ = 1
and k− = 0, respectively. These particular curves delimit a bounded region of plane that we call
Λ and it is the main object of this section. Figure 1 summarizes these facts.

p+p− p
Σe ΣsΣc Σc

Σ−1 1

Figura 1: Special integral curves and tangency points.

Proposition 1. Consider Z = (X,Y ) ∈ Ω, where X(x, y) = (1,−2x), Y (x, y) = (−2, 4x3 − 2x)
and Σ = f−1(0) = {(x, y) ∈ R

2; y = 0}. The set

Λ = {(x, y) ∈ R
2;−1 ≤ x ≤ 1 and x4/2− x2/2 ≤ y ≤ 1− x2}. (2)

is a minimal set for Z.

Demonstração. It is easy to see that Λ is compact and has non-empty interior. Moreover, by
Definition 1, on ∂Λ \ {p} we have uniqueness of trajectory (here ∂B means the boundary of the
set B). Note that a global trajectory of any point in Λ meets p for some time t∗. Since p is a
visible tangency point for Y and p ∈ ∂Σe ∩ ∂Σs, according to the fourth bullet of Definition 1
any trajectory passing through p remain in Λ. Consequently Λ is Z-invariant. Moreover, given
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p1, p2 ∈ Λ the positive global trajectory by p1 reaches the sliding region between p and p+ and
slides to p. The negative global trajectory by p2 reaches the escaping region between p and p−
and slides to p. So, there exists a global trajectory connecting p1 and p2. Now, let Λ

′ ⊂ Λ be a
Z-invariant set. Given q1 ∈ Λ′ and q2 ∈ Λ since there exists a global trajectory connecting them
we conclude that q2 ∈ Λ′. Therefore, Λ′ = Λ and Λ is a minimal set.

Example 2. The set Λ1 (see Figure 2)defined by some particulars integral curves of the vector
field Z1 = (X,Y ) ∈ Ω, defined by X(x, y) = (1,−2x+1), Y (x, y) = (−1, (−2+x)(−22+x(−7+
4x))) with Σ = f−1(0) = {(x, y) ∈ R

2; y = 0} is Z1-minimal but it is neither Z1-positively
minimal nor Z1-negatively minimal.

p− p̃

p

q p+Σ

Figura 2: Z1-minimal set Λ1. Λ1 is neither Z1-positively minimal nor Z1-negatively minimal.

Example 3. The Z-minimal set presented in Proposition 1 is also Z-positively minimal and
Z-negatively minimal. The proof of this fact follows the same lines of the proof of Proposition
1.

Example 4. Consider Z2 a DVF presenting the phase portrait exhibited in Figure 3 with Σ =
f−1(0) = {(x, y) ∈ R

2; y = 0} and Λ2 the set indicated in gray. Then the set Λ2 is Z2-minimal
and also Z2-positively minimal but not Z2-negatively minimal for this DVF.

p0

p1

p̃ p2

p3

p4
Σ

Figura 3: The Z2-minimal set Λ2.

Next theorem says that the vector field presented in Proposition 1 is chaotic under Λ.

Theorem 8. Consider Z = (X,Y ) ∈ Ω and Λ as in Proposition 1, where Σ = f−1(0) =
{(x, y) ∈ R

2; y = 0}. Then the planar DVF Z is chaotic on Λ.

Before proving Theorem 8 we present the following lemma. It will be fundamental in the
proof of Theorem 8.

Lemma 2. Consider the set Λ defined in Theorem 8. Then, for any x, y ∈ Λ, there exist a
positive global trajectory Γ+(t, x) passing through x and t0 > 0 such that Γ+(t0, x) = y.

The previous lemma says that any two points in Λ can be connected by some positive global
trajectory. Its proof is straighfoward if we observe that a global trajectory of any point in Λ
meets p for some time t∗, as the authors argued in [2]. Now we prove Theorem 8.
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Proof of Theorem 8. In order to prove that the DVF Z is topologically transitive on Λ, we
observe that Λ is compact and invariant since it is minimal (see Proposition 1 of [2]). Now
consider nonempty open sets U and V in Λ. Since U and V are nonempty, there exist at least
an element λ1 in U and another one λ2 in V . By Lemma 2, there exist a positive global trajectory
Γ+(t, λ1) passing through λ1 and t0 > 0 such that Γ+(t0, λ1) = λ2 ∈ V . Consequently the DVF
Z is topologically transitive on the invariant set Λ.

Now we prove that Z exhibits sensitive dependence on Λ. Indeed, take m = diam(Λ) and
consider r = m/2 > 0. Since r < m then there exists two elements a and b in Λ such that
d(a, b) > r. Now consider x ∈ Λ, ε > 0 and fix y ∈ Bε(x) ∩ Λ. By Lemma 2 there exist positive
global trajectories Γ+

Z (t, x) of x and Γ+

Z (t, y) of y and numbers t1, t2 > 0 such that Γ+

Z (t1, x) = a
and Γ+

Z(t2, y) = b. Then dH(Γ+

Z (t1, x),Γ
+

Z (t2, y)) = d(a, b) > r and consequently Z exhibits
sensitive dependence on Λ. Thus the planar DVF Z is chaotic on the invariant compact set
Λ.

The following result indicates the presence of chaos in the DVF Z2 studied in this section.

Theorem 9. Consider the DVF Z2 and the set Λ2 as presented in Example 4. Then Z2 is
chaotic on Λ2.

Proof. The proof of Theorem 9 follows the same lines of the proof of Theorem 8 by using a
similar result to Lemma 2 for the Z-minimal set Λ2.

One should note that Theorems 8 and 9 present examples of PSVFs that are chaotic on
minimal sets. This fact suggests a relation between chaoticity and minimality in PSVF that we
make clear in the following theorem.

In what follows we denote by med(·) the Lebesgue measure.

Theorem 10. Let Z be a planar DVF and Λ ⊂ R
2 a compact invariant set. If Λ is Z-positively

minimal and Z-negatively minimal satisfying med(Λ) > 0, then Z is chaotic on Λ.

Theorem 10 is a very interesting result because presents a connection between two important
different objects of the recent theory of DVF, namely, the chaotic planar systems and the non-
trivial Z-minimal sets.

In order to prove Theorem 10, we introduce the next two lemmas. The first one is a gene-
ralization of Lemma 2.

Lemma 3. Under the same hypotheses of Theorem 10, it holds that for any x, y ∈ Λ, there exist
a global trajectory Γ(t, y) passing through y and t∗ > 0 such that Γ+(t∗, y) = x.

Proof. Since med(Λ) > 0, by Poincaré-Bendixson Theorem for DVF presented in [2], there exist
at least a set A ⊂ Σ ∩ (Σe ∪ Σs). Othewise, we have Σ ∩ Λ = Σc ∪ Σt and then by the referred
theorem we get med(Λ) = 0, where Σt is the set of tangencies points of Z. For each a ∈ A,
denote by Π+

a the set of all positive global trajectories passing through a and by Π−
a its negative

analogous. Now consider the sets

A±
a =

⋃

Γa∈Π
±
a

Γa(t, a) ⊂ Λ.

Actually we have A±
a = Λ, since A±

a is Z-positively (respectively negatively) invariant restrained
in the Z-positively (respectively negatively) minimal set Λ. In order to see that A+

a is Z-
positively invariant, let p be a point in A+

a and Γp(t, p) a positive global trajectory passing
through p. Since p ∈ A+

a , then there exists a positive global trajectory Γ̃a(t, a) passing through
a and t0 > 0 such that Γ̃a(t0, a) = p. Consequently Γp(t, p) belongs to A+

a once it is restrained
to the positive global trajetory Γ̂a(t, a) = Γ̃a(t, a) ∪ Γp(t, p) ⊂ A+

a . Analogously we can prove
that A−

a is Z-negatively invariant.
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Now consider x, y ∈ Λ arbitrary points. Since A−
a = Λ = A+

a , there exists Γ+
a (t, a) ∈ A+

a a
positive global trajectory, Γ−

a (t, a) ∈ A−
a a negative global trajectory and values tx > 0, ty < 0

such that Γ+
a (tx, a) = x and Γ+

a (ty, a) = y. Consequently there exists a global trajectory Γ(t, y)
passing through y and t∗ = tx + |ty| > 0 such that Γ(t∗, y) = x.

Lemma 4. Under the same hypotheses of Theorem 10, if any two points of Λ can be connected
by a global trajectory of Z, then Z is chaotic on Λ.

Proof. The proof of Lemma 4 is similar to the proof of Theorem 8 by using Lemma 3 instead of
Lemma 2.

Proof of Theorem 10. The proof is straightforward from Lemmas 3 and 4.

We stress that in each example through this work we have Σe ∩ Σs 6= ∅. Nevertheless, non-
trivial minimal sets can not happen when Σe ∩ Σs = ∅, as proved in [2]. Indeed, in such work
the authors introduce a version of the classical Poincaré-Bendixson Theorem for DVFs without
sliding motion. There it is shown that the limit sets are the classical ones besides pseudo-cycles,
pseudo-graphs and singular tangencial singularities.

4 Conclusions

In this work we have introduced definitions of Z-minimal sets of DVFs taking into account
the fact that DVFs have a strong dependence of the orientation of the trajectories, as we can
see in Definition 1. Moreover, we verified the existence of non deterministic chaos in planar
DVFs whithout symmetry or coincidence of invisible tangencies (Canard phenomena). As far
as the authors know, this is the first time that non-smooth systems with such characteristic are
observed in the planar case. Finally, we verify the presence of chaotic behavior in planar DVFs
and present a result relating chaotic behaviour with orientable minimality, which emphasizes
the importance of providing the definition of orientable minimality.

Referências

[1] M. di Bernardo, C.J. Budd, A.R. Champneys and P. Kowalczyk, Piecewise-smooth
Dynamical Systems − Theory and Applications, Springer-Verlag (2008).

[2] C.A. Buzzi, T. de Carvalho and R.D. Euzebio, On Poincare-Bendixson Theorem
and non-trivial minimal sets in planar nonsmooth vector fields, submitted (arxiv link:
http://arxiv.org/pdf/1307.6825v1.pdf).

[3] A. Colombo and M.R. Jeffrey, Nondeterministic chaos, and the two-fold singularity
in piecewise smooth flows, SIAM J. Applied Dymanical Systems, 102, (2011), 423–451.

[4] A.F. Filippov, Differential Equations with Discontinuous Righthand Sides, Mathematics
and its Applications (Soviet Series), Kluwer Academic Publishers-Dordrecht, 1988.

[5] M. Guardia, T.M. Seara and M.A. Teixeira, Generic bifurcations of low codimension
of planar Filippov Systems, Journal of Differential Equations 250 (2011) 1967–2023.

[6] C. Gutierrez, Smoothing continuous flows and the converse of Denjoy-Schwartz Theorem,
Anais Academia Brasileira de Ciências, 51(4) (1979), 581–589.

[7] M.A. Teixeira, Perturbation Theory for Non-smooth Systems, Meyers: Encyclopedia of
Complexity and Systems Science 152 (2008).

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 3, N. 1, 2015.

DOI: 10.5540/03.2015.003.01.0019 010019-7 © 2015 SBMAC

http://dx.doi.org/10.5540/03.2015.003.01.0019

