
Proceeding Series of the Brazilian Society of Computational and Applied Mathematics
Preprint

Statistical Properties for Trigonometric Random Fields
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Abstract. This work presents a general form for a scalar random field which is written as a sum
of finitely many Fourier modes. We get some of its statistical proprieties and analyze its geometry.
Additionally, we derive a model for a Gaussian, two-dimensional, mean-zero, homogeneous, steady,
and incompressible random velocity field and provide numerical evidence about the non-normality
of the joint distribution of the Lagrangian velocity process.
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1 Introduction
The problem of obtaining the statistical descriptions of the motion of one single particle in a

random velocity field has being studied for many years. In particular, the passive tracer transport
problem, which consists of determining the probability law of the position Xt, for t ≥ 0, of one
single particle at time t ≥ 0, which is moved by a random velocity field U when the motion of
the particle does not affect the random velocity field. For references, see [4, 5, 9, 10]. In Figure 1,
we present a single realization of a velocity field U and the trajectory of one particle starting its
motion at X0 = 0 from time t = t0 to time t = t1, which is a useful visual tool to understand and
exemplify some key concepts.

Figure 1: Velocity field and trajectory of one single particle from t0 = 0 to t = t1.

Let U = {U (x, t) ,x ∈ R2, t ≥ 0} be a random velocity field and let Xt be the particle position
at time t, for t ≥ 0. So Xt, t ≥ 0 is the solution of the differential equation of the motion given by

dXt

dt
= U(Xt, t), t > 0; X0 = 0. (1)

We are interested in determining the law of the entire stochastic location process X = {Xt, t ≥ 0},
given the law of the random velocity field U. However, despite much work being done on this
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problem, we still have only a limited ability to derive results about the law of the particle position
Xt from the law of the velocity field U(x, t).

A related and important problem is to determine the law of the Lagrangian velocity process
U = {U(Xt, t), t ≥ 0}, which is the particle’s velocity viewed by an observer whose location Xt

is determined by the environment. Different from the Eulerian description provided by U(x, t),
for which the coordinate system is fixed, the Lagrangian description gives us a description of the
velocity field from the view of a particle following the velocity field.

Remark 1.1. In a previous work [8], we use trigonometric velocity fields, as in Eq(6), to get the
first terms of the Taylor expansion for the Lagrangian auto-covariance function, which is a piece
of important statistical information for the Lagrangian velocity process U.

For this work we assume a scalar random field S(x, t), x ∈ R2, for t ≥ 0, also called a stream
function, written as a sum of finitely many Fourier modes. Then we present some theoretical
results for its statistical properties and prescribe conditions for which every sum of finitely many
Fourier modes provides a scalar Gaussian random field. Additionally, we analyze its geometry.

By considering the perpendicular gradient of the stream function S(x, t) we present a model
for an incompressible random velocity field U(x, t), x ∈ R2, t ≥ 0 which is also written as a sum of
finitely many Fourier modes and has similar statistical properties as the stream function S(x, t).
In addition, we explore numerical simulations for particle trajectories and the Lagrangian velocity
U(Xt, t), for t ≥ 0, for steady Gaussian trigonometric velocity fields. In fact, we are able to present
numerical evidence that the joint distribution of (U(0),U(Xt)), for each t > 0, is not Gaussian.

2 Trigonometric Stream Functions
Let us start by setting a stream function written as a sum of finitely many Fourier modes as

S(x) =
1√
N

N∑
n=1

Rn cos(Wn ·x+Φn), x ∈ R2, (2)

where the random amplitudes Rn and random wave numbers Wn are independent of the ran-
dom phases Φn, in the sense that the collection (R1,W1, R2,W2, · · · , RN ,WN ) is independent of
(Φ1,Φ2, . . . ,ΦN ). Furthermore, we assume that the random phases Φn, n = 1, 2, . . . , N , are inde-
pendent and uniformly distributed on [0, 2π], and the random vectors (Rn,Wn), n = 1, 2, . . . , N ,
are square-integrable.

2.1 Some Statistical Proprieties for S(x)

The stream function S(x) as defined above have some nice statistical properties.

Proposition 2.1. Let S(x), x ∈ R2, be a random field as in Eq.(2). Then S(x) is mean-zero.

Proof. For details, see [7].

Definition 2.1. A random field S(x), x ∈ R2, is said to be strictly homogeneous if, for all m ∈ N
and x1,x2, . . . ,xm ∈ R2, the random vector (S(x1 + x), S(x2 + x), . . . , S(xm + x)) has the same
distribution, for all x ∈ R2.

Theorem 2.1. Let S(x) be a random field as in Eq.(2). Then S(x) is strictly homogeneous.

Proof. For details, see [7].
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Remark 2.1. Notice that the stream function S(x) is a mean-zero, strictly homogeneous, and
stationary scalar random field. Later, we construct a bi-dimensional and incompressible random
velocity field U(x, t) that preserves these same statistical proprieties from S(x).

2.1.1 Gaussian Stream Functions

Assuming the general form for S(x) as described in Eq.(2), we are able to prescribe conditions
for which every sum of finitely many Fourier modes provides a scalar Gaussian random field.

Starting with the case N = 1, that is, the scalar random field S(x) is written as

S(x) = R cos(W·x+Φ), x ∈ R2, (3)

where (R,W) is independent of Φ and Φ is uniformly distributed on [0, 2π]. We want to assign a
distribution for random vector (R,W) that makes S(x) normally distributed, for every x ∈ R2.

Remark 2.2. According to Theorem 2.1, S(x) is strictly homogeneous and then S(0) and S(x)
have the same distribution, for all x ∈ R2. Furthermore, we have that

S(0) = R cos(Φ), (4)

and so the distribution of S(0) depends only on the distributions of random variables R and Φ.

Remark 2.3. Notice that by setting Z1 =
√
−2 lnU1 cos(2πU2) and Z2 =

√
−2 lnU1 sin(2πU2),

where U1 and U2 are independent and uniformly distributed on [0, 1], we get a pair of independent
and normally distributed random variables with mean 0 and variance 1, see [2]. Then we can set
R =

√
−2 lnU1, in this case, R has density fR(r) = 1

2 |r|e
− 1

2 r
2

, for r ∈ R, and Φ = 2πU2, in
Eq.(4), so that S(0) is normally distributed.

Lemma 2.1. Let S(x) be as in Eq.(3), where random variables R =
√
−2 lnU1 and Φ = 2πU2

with U1 and U2 independent and uniformly distributed on [0, 1], and W = w with probability 1, for
some fixed w ∈ R2. Then, S(x) is jointly Gaussian.

Proof. For details, see [7].

Remark 2.4. Assuming that random vectors (Rn,Wn,Φn), for n = 1, 2, . . . , N , are independent
and identically distributed and P(Wn = wn) = 1, for n=1,2,. . . , N, for given w1, w2, . . . , wN ∈ R2.
Notice that by extending the results on Remark 2.3 and on Lemma 2.1 we can get jointly Gaussian
random fields, as in Eq.(2), with finitely many Fourier modes. In particular, S(0) is Gaussian.

2.2 The Geometry of the Stream Function

Notice that stream function S(x), as in Eq.(2), is a function defined on R2 that assumes values
on R, so it is suitable and informative to represent S(x) using contour plots. We want to analyze
how the number of Fourier modes N changes the stream function S(x) for different values of N .

Considering the case N = 1, we have

S(x) = R cos(W·x+Φ), x ∈ R2, (5)

where R ∈ R, W ∈ R2, and Φ ∈ [0, 2π]. The contour plot associated to this stream function consists
of parallel straight lines in the plane. The parameter W provides the slope of such straight lines;
the parameter R gives the amplitude of S(x); and the parameter Φ acts as a spatial translation.
In Figure 2, we present one realization for a stream function S(x) with only 1 Fourier mode.
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Figure 2: Stream function S(x) for a model with 1 Fourier mode.

For the case N = 2, by setting R1 = R2 = 1 and choosing distinct combinations for W1 and W2

we notice different configurations for level curves of S(x), see Figure 3. The visual representation,
however, does not change for different values of R as long as they are constant and not 0. We
present two extreme cases, when W1 and W2 are parallel and perpendicular, and two intermediate
cases to illustrate how the form of level curves change according to wave numbers.

Figure 3: Stream function S(x) for a model with 2 Fourier modes.

As we increase the number of Fourier modes of the stream function S(x) then it becomes more
complex, for example, it is harder to identify some periodicity on contour plots of S(x). In Figure
4, we present contour plots for a model with random wave-numbers and distinct values of N .

Figure 4: Stream functions S(x) for N = 5, N = 10, N = 15, and N = 20 Fourier modes.
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2.3 Trigonometric Velocity Fields
Starting with the stream function described in Eq.(2), we can define a divergence-free velocity

filed U(x), for x ∈ R2, by considering the perpendicular gradient of such stream function, that
is,U(x) = ▽⊥S(x), or, more explicitly, writing

U(x) =
1√
N

N∑
n=1

Rn sin(Wn ·x+Φn)Θn, x ∈ R2, (6)

where Θn = W⊥
n is a counter clockwise rotation of Wn by angle π/2, collections of random vari-

ables (R1,W1, R2,W2, · · · , RN ,WN ) and (Φ1,Φ2, . . . ,ΦN ) are independent and random phases
Φn, n = 1, 2, . . . , N , are independent and uniformly distributed on [0, 2π].

Remark 2.5. Notice that U(x), as in Eq.(6), is a two-dimensional, mean-zero, strictly homoge-
neous, stationary, and incompressible random field. For details, see [7]. Such properties are key
statistical properties of real turbulence. Unlike real turbulence, however, U(x) does not depend on
t. Moreover, those statistical proprieties for a random field match with the properties of random
fields described in many works available in the literature, for references see [1, 3, 4].

Remark 2.6. Consider the stream function S(x) as in Eq(2), under the conditions prescribed by
the Remark 2.4, and the velocity field U(x) as in Eq.(6). Assume that one single particle moves
according to the random velocity field, satisfying the differential equation of the motion given by
Eq.(1). So the Lagrangian velocity U(0), at t = 0, is Gaussian since each component of U(0) has
the same distribution as S(0).

Remark 2.7. According to [6, 11], the Lagrangian velocity process U(Xt, t), for t ≥ 0, is stationary
and so random fields U(X0, 0) and U(Xt, t) have the same distribution, for all t ≥ 0. In particular,
U(X0, 0) and U(Xt, t) are Gaussian. However, we do have only limited information about the joint
distribution of U(X0, 0) and U(Xt, t), for t > 0.

2.4 Numerical Simulations for the Lagrangian velocity
Let us consider a simple velocity field U(x) with only two Fourier modes and deterministic wave

numbers w1 = (1, 0) and w2 = (0, 1), which are perpendicular and have the same modulus equals
1. Assuming that random vectors (R1,Φ1) and (R2,Φ2) are independent, random amplitudes R1

and R2 are independent and identically distributed with density fRi(r) =
1
2 |r|e

− 1
2 r

2

, for r ∈ R, for
i = 1, 2, and random phases Φ1 and Φ2 are independent and uniformly distributed on [0, 2π]. So

U(x) =
1√
2
(R1 sin(w1 ·x+Φ1)θ1 +R2 sin(w2 ·x+Φ2)θ2) , x ∈ R2, (7)

is is a mean-zero, strictly homogeneous, stationary, and incompressible random velocity field and
U(0) is Gaussian. Moreover, according to Remark 2.7, the Lagrangian velocity U(Xt), at time
t > 0, has the same distribution as U(0).

Assume that one single particle moves according Eq.(1). We set an experiment that consists
of repeatedly dropping a particle on velocity field U(x) at location X0 = 0, for t0 = 0, for many
realizations of the velocity field U(x), track it, and then analyze Lagrangian velocities U(0), at
time t0 = 0, and U(Xt1), at time t1 = 5. We numerically generate a large number of realizations
of such experiment, then we use quantile-quantile plots, or just called Q-Q plots, which consist of
a graphical method for comparing two probability distributions. In this case, we are looking to see
whether the data fits or not a straight line. If it does, the Q-Q plot suggests that data came from a
normal distribution, if it does not then data are not from a normal distribution. Thus, we analyze
and compare data coming from U(0, 0) and U(Xt, t) with data from a Gaussian distribution.
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Remark 2.8. According to Figure 5, data from each component of U(0) fits almost perfectly
to the straight lines. Similar Q-Q plots show the same visual representation for U(Xt). Such
representations suggest that each component of U(0) and U(Xt) is Gaussian. Moreover, in Figure
6, data from linear combinations of components of U(0) or U(Xt) also fits very well to the straight
lines, suggesting that linear combinations of components of U(0) and U(Xt) are also Gaussian.
These facts agree with the results from Remarks 2.7 and Remark 2.6.
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Figure 5: Q-Q plots for each component of U(0).

-4 -3 -2 -1 0 1 2 3 4

Standard Normal Quantiles

-1.5

-1

-0.5

0

0.5

1

1.5

Q
u
an

ti
le

s 
o
f 

In
p
u
t 

S
am

p
le

Checking normallity for Linear Combination U(0)

-4 -3 -2 -1 0 1 2 3 4

Standard Normal Quantiles

-1.5

-1

-0.5

0

0.5

1

1.5

Q
u
an

ti
le

s 
o
f 

In
p
u
t 

S
am

p
le

Checking normallity for Linear Combination U(X
t
)

Figure 6: Q-Q plots for a linear combinations of components of U(0) and U(Xt).

Remark 2.9. Even though each component of U(0) and U(Xt) is Gaussian and linear combi-
nations of components of U(0) and U(Xt) are Gaussian, according to Remark 2.8, we have no
guaranties that U(0) and U(Xt) are jointly Gaussian. In fact, in Figure 7, we have a Q-Q plot
for a linear combination of random components of U(0) and U(Xt). It is easily noticeable that
data does not fit to the straight line corresponding to quantiles for a Gaussian distribution, which
strongly suggest that U(0) and U(Xt) are not jointly Gaussian.
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Figure 7: Q-Q plot for a linear combination of U(0) and U(Xt).

3 Conclusion
In this work, we present a simple model for a scalar random field S(x) written as a sum of

Fourier modes. We obtain some of its statistical properties and prescribe conditions for which
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every sum of finitely many Fourier modes provides a scalar Gaussian field. As a consequence of
the definition of incompressible fields, by taking the perpendicular gradient of S(x) we obtain an
incompressible bi-dimensional random field which components have the same distribution from
the scalar field. This fact allows us to extend some theoretical results and obtain the statistical
properties for the bi-dimensional random field. Additionally, we use contour plots to analyze how
parameters in the model change the geometry of such scalar fields.

From this model for a stream function S(x) we derive a model for a bi-dimensional random
velocity field U(x), which is suitable to calculate the Taylor expansion for the Lagrangian velocity
U(Xt) and whose properties match with some important statistical properties of real turbulence,
such as homogeneity, stationarity, and incompressibility. In addition, we prescribe conditions for
which U(Xt), for t ≥ 0, is Gaussian. Furthermore, we design a numerical experiment and use Q-Q
plots to illustrate some theoretical results concerning the distribution of components of U(0) and
U(Xt) and present graphical evidence that suggest U(0) and U(Xt) are not jointly Gaussian.
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