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Single-Level Differentiability for Interval-valued Functions
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Abstract. This study uses the theory of single-level difference for interval-valued functions to
propose the concept of single-level differentiability, illustrate its calculations, and investigate how
its single-level derivative (SL-derivative) relates to other mathematical derivatives.
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1 Introduction
Interval Analysis is a form of numerical analysis that works with interval uncertainty. Re-

searchers use this technique in abstract mathematical representations to model deterministic real-
world phenomena.

In this groundbreaking study, Hukuhara [9] introduced the Hukuhara derivative of a set-valued
mapping, and in 2009 Stefanini and Bede [17] built on this work to present a concept of differen-
tiability based on the generalized Hukuhara difference (gH-difference for short). The concept of
derivative is fundamental in determining real-valued functions, and when implementing Interval
Analysis, one expects to be able to predict the derivative of an interval-valued function. How-
ever, although several researchers have applied this approach in their work (see [5, 6, 10, 17,
18]), Hukuhara’s differentiability concept has a critical drawback: the paradoxical behavior of the
solution of a set or a fuzzy differential equation.

In 2014, Chalco-Cano et al. [4] addressed this issue by introducing a new interval arithmetic
called Single Level Constraint Interval Arithmetic (SLCIA). This arithmetic is a variant of the
constraint interval arithmetic proposed by Lodwick [11] that operates with a single parameter in
each interval operand of an expression. This equation results in a computationally simple interval
arithmetic with many desirable properties not generally shared by interval operations previously
defined in the literature. In our study, we understand differentiability through the lens of this
arithmetic.

2 Basic concepts
In this section, we describe five basic elements of SLCIA as proposed in Chalco-Cano et al. [4]:

constraint function, algebraic operations, equivalence with other operations, interval expression
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and the properties of the C-sum and C-difference.
Frist, Chalco-Cano et al. [4] stated that single-level constraint arithmetic is applied when the

variation of values within the extremes of an interval occurs in tandem. This arithmetic assumes
that variations between intervals are always in the same way.

Let A = [a, a] ∈ I(R). Then, a continuous function A : [0, 1]→ R such that

min
0≤λ≤1

A(λ) = a, max
0≤λ≤1

A(λ) = a,

will be called a constraint function associated with A. Also associated with the interval A is the
decreasing convex constraint function A, defined by Chalco-Cano et al. [4] as A : [0, 1] → R by
means

A(λ) = λa+ (1− λ)a, 0 ≤ λ ≤ 1.

Remark 2.1. In this paper, we define the decreasing convex constraint function. However, given
that the decreasing and increasing convex constraint functions are analogous to each other, the same
form can be used for the increasing convex constraint function. Different constraint functions can
determine the same interval.

Second, Chalco-Cano et al. [4] presented the algebraic operations on I(R) for the decreasing
convex constraint function.

Definition 2.1. [4] Let A and B be two intervals and let ∗ be an arithmetic operation on R. Then,

1. the constraint function associated with interval A~B is given by (A~B)(λ) = A(λ) ∗B(λ),
where A(λ) and B(λ) are the functions associated with A and B, respectively;

2. the single-level constraint arithmetic operation (C-operation for short) A~B on I(R) is given
by the interval

A~B =

[
min

0≤λ≤1
(A(λ) ∗B(λ)), max

0≤λ≤1
(A(λ) ∗B(λ))

]
,

provided that the minimum and maximum exist.

Example 2.1. Let A = [−1, 0] and B = [1, 3] be two intervals. Then, the convex constraint
functions associated with A and B are A(λ) = −λ and B(λ) = −2λ+ 3, respectively. So,

A	B =

[
min

0≤λ≤1
(λ− 3), max

0≤λ≤1
(λ− 3)

]
= [−3,−2].

Let A,B ∈ I(R) and α ∈ R be given, then

1. A⊕B = [a+ b, a+ b].

2. α�A = [min{αa, αa},max{αa, αa}].

3. A	B = [min{a− b, a− b},max{a− b, a− b}].

Additionally, Chalco-Cano et al. [4] showed that the C-sum of intervals and the C-multiplication
of an interval by a scalar coincident with the usual operations of sum and multiplication by scalar.
This element was denoted by Minkowski operations [7] and defined in Moore [13].

Futhermore, the C-difference, Markov’s difference, and gH-difference are equivalent to each
other (see [12, 16]). As such, Stefanini [16] introduced the gH-difference to guarantee that the
difference between two intervals would always exist.
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Chalco-Cano [4] further showed that E(A1, A2, ..., An) is a correct expression in interval arith-
metic if E(x1, x2, ..., xn) is correctly constructed in a formal language for arithmetic operations
with real number operands x1, x2, ..., xn and usual arithmetic operations on real numbers (see [8]).
In interval expressions, all real arithmetic operations ∗ have been replaced with ~.

Considering thatA1(λ), ..., An(λ) are the convex constraint functions associated withA1, ..., An ∈
I(R), the evaluation of a correct expression is performed according to the following rule:

E(A1, A2, ..., An) =

[
min

0≤λ≤1
E(A1(λ), ..., An(λ)), max

0≤λ≤1
E(A1(λ), ..., An(λ))

]
.

This is the evaluated of the expression E with the given arguments provided that the min and max
exist.

Proposition 2.1. [4] If given two expressions E1(x1, x2, ..., xn) and E2(x1, x2, ..., xn), that have
the same result, that is,

E1(x1, x2, ..., xn) = E2(x1, x2, ..., xn) for all x1, x2, ..., xn ∈ R,

then

E1(A1, A2, ..., An) = E2(A1, A2, ..., An) for all A1, A2, ..., An ∈ I(R).

An important fact to note is that A⊕ (−A) = [0, 0] for any interval A.
Finally, Chalco-Cano [4] outline many properties of C-sum and C-difference such as associativ-

ity, commutativity, unique neutral element, and opposite element for the sum. For more informa-
tion about C-operation and properties see Chalco-Cano [4].

The function ‖ A ‖:= max{|a|, |a|}, where A ∈ I(R), satisfies

‖ A ‖= 0, if and only if A = [0, 0];

‖ α�A ‖=| α |‖ A ‖;
‖ A⊕B ‖≤‖ A ‖ + ‖ B ‖;
‖ A	B ‖≤‖ A ‖ + ‖ B ‖ .

It is readily seen that the usual metric in I(R):

d(A,B) = max{|a− b|, |a− b|}

is associated with the function ‖ · ‖ by d(A, [0, 0]) =‖ A ‖ and d(A,B) =‖ A	B ‖.
This metric is equivalent with the metric dC proposed by Chalco-Cano et al. [4] and the metric

H proposed by Pompeiu-Hausdorff [15] between two intervals. The interval space with the metric
Pompeiu-Hausdorff is a complete and separable metric space (see [1, 2]).

The interval space {I(R),⊕,�,	} presents an interesting algebraic structure to develop an
elementary calculus for interval-valued functions of a real variable.

3 Single-level derivative

In the context of the derivative of interval-valued functions, Stefanini and Bede [17] proposed
the generalized Hukuhara differentiable based on the gH-difference. Bede and Gal [3] presented
derivative concepts using the strongly and weakly generalized (Hukuhara) differentiable.

We defined a derivative by means of the C-difference as follows:

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 9, n. 1, 2022.

DOI: 10.5540/03.2022.009.01.0304 010304-3 © 2022 SBMAC

http://dx.doi.org/10.5540/03.2022.009.01.0304


4

Definition 3.1. Let x0 ∈]a, b[ and a real number h 6= 0 be given such that x0 + h ∈]a, b[, then the
SL-derivative of a function F : [a, b]→ I(R) at x0 is defined as

DSLF (x0) = lim
h→0

1

h
� (F (x0 + h)	 F (x0)). (1)

If DSLF (x) ∈ I(R) satisfying (1) exists, we say that F is a single-level differentiable (SL-differentiable
for short) at x0.

Given that the C-difference, gH-difference, π-difference, and M-difference are equivalent (see
[12, 14]), it follows that the SL-derivative, gH-derivative, π-derivative, and M-derivative (see [12,
14]) are also identical.

Remark 3.1. Considering F (λ)(x0 + h) and F (λ)(x0) are the convex constraint functions asso-
ciated with F (x0 + h) and F (x0), respectively, we have

F ′(λ)(x0) := lim
h→0

1

h
(F (λ)(x0 + h)− F (λ)(x0)) (2)

as a constraint function associated with the new interval. Then,

DSLF (x0) =

[
min

0≤λ≤1
F ′(λ)(x0), max

0≤λ≤1
F ′(λ)(x0)

]
provided with the minimum and maximum exist.

Example 3.1. Let F : R → I(R) be an interval-valued function such that F (x) = A � x, where
A is an interval. If A(λ) is the convex constraint function associated with the interval A, then
F (λ)(x) = A(λ)x and F (λ)(x+ h) = A(λ)(x+ h) are the constraint functions associated with the
intervals F (x) and F (x+ h), respectively. Thus,

lim
h→0

1

h
(F (λ)(x+ h)− F (λ)(x)) = lim

h→0
A(λ) = A(λ).

Therefore,

DSLF (x) =

[
min

0≤λ≤1
A(λ), max

0≤λ≤1
A(λ)

]
= A.

Example 3.2. If F (x) = A� p(x), where p is a crisp differentiable function and A is an interval,
then DLSF (x) = A�p′(x). If A(λ) is the convex constraint function associated with the interval A,
then F (λ)(x) = A(λ)p(x) and F (λ)(x+ h) = A(λ)p(x+ h) are the constraint functions associated
with the intervals F (x) and F (x+ h), respectively. Thus,

lim
h→0

1

h
(F (λ)(x+ h)− F (λ)(x)) = A(λ)p′(x).

Therefore,

DSLF (x) =

[
min

0≤λ≤1
A(λ)p′(x), max

0≤λ≤1
A(λ)p′(x)

]
= A� p′(x).

The next result expresses the SL-derivative in terms of the endpoint function derivative.

Theorem 3.1. Let F : T → I(R) be an interval-valued function such that F (x) = [f(x), f(x)]. If
f and f are differentiable functions at x0 ∈ T , then F is SL-differentiable at x0 and

DSLF (x0) =

[
min

0≤λ≤1
{λf ′(x0) + (1− λ)f ′(x0)}, max

0≤λ≤1
{λf ′(x0) + (1− λ)f ′(x0)}

]
.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 9, n. 1, 2022.

DOI: 10.5540/03.2022.009.01.0304 010304-4 © 2022 SBMAC

http://dx.doi.org/10.5540/03.2022.009.01.0304


5

Example 3.3. Let F : R → I(R) be an interval-valued function such that F (x) = [e−x, 2e−x]. In
this context, F ′(x)(λ) = ex(λ−2) is the limit (2), and ex(λ−2) = λ(e−x)′+(1−λ)(2e−x)′. Then,

DSLF (x) =

[
min

0≤λ≤1
{ex(λ− 2)}, max

0≤λ≤1
{ex(λ− 2)}

]
= [−2e−x,−e−x].

Note that, the converse of Theorem 3.1 is not true; that is, the SL-differentiability of F does
not imply the differentiability of f and f . Consider the example below.

Example 3.4. Let F : R→ I(R) be an interval-valued function such that F (x) = [−|x|, |x|]. This
interval-valued function is SL-differentiable at x = 0 and DSL(0) = [−1, 1]. However, f and f are
not differentiable functions at x = 0, so F ′(λ)(x) is not differentiable for all λ ∈ [0, 1].
Indeed, let F (λ)(x) be the convex constraint function associated with F , where

F (λ)(x) = λ(−x) + (1− λ)x.

So,

DSLF (0) =

[
min

0≤λ≤1
(−2λ+ 1), max

0≤λ≤1
(−2λ+ 1)

]
= [−1, 1].

Therefore, DSL(0) = [−1, 1].

4 Conclusion
In this paper, we present the single-level differentiability concept for interval-valued functions

and provid several examples of its application to better understand the theories laid out in this
study. Future research on this topic should include the optimality condition for interval-valued
optimization problems using the single-level derivative.
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