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Abstract: We deal with piecewise smooth vector fields on the plane and prove that the analysis
of their local behavior around certain typical singularities can be treated via singular perturba-
tion theory. In fact, after a regularization of a such system and a blow−up we are able to bring
out some results that bridge the space between piecewise smooth vector fields presenting typical
singularities and singularly perturbed smooth systems.
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1 Introduction

This work fits within the geometric study of singular perturbation problems expressed by vector
fields on R

2. We study the phase portraits of certain non−smooth (piecewise smooth) planar
vector fields having a curve Σ as the discontinuity set. We present some results in the framework
developed by Sotomayor and Teixeira in [7] (and extended in [6]) and establish a bridge between
those systems and the fundamental role played by the geometric singular perturbation theory.
This transition was introduced in papers like [1] and [4], in dimensions 2 and 3 respectively.
Results in this context can be found in [5]. We deal with non−smooth vector fields presenting
structurally unstable configurations and we prove that these structurally unstable configurations
are carried over the geometric singular perturbation problem associated.

1.1 Setting the problem

Let U ⊆ R
2 be an open set, (0, 0) ∈ U and Σ = {(x, y) ∈ U |x = 0}. Clearly Σ is the separating

boundary of the regions Σ+ = {(x, y) ∈ U |x ≥ 0} and Σ− = {(x, y) ∈ U |x ≤ 0}. Denote by
X
r the space of Cr−vector fields on a compact set K ⊂ U endowed with the Cr−topology with

r ≥ 1. Consider Z : K\Σ → R
2 such that

Z(x, y) =

{

X(x, y), for (x, y) ∈ Σ+,
Y (x, y), for (x, y) ∈ Σ−,

(1)

where X = (h1, g1), Y = (h2, g2) ∈ X
r. We denote Z = (X,Y ) and distinguish the following

regions on Σ :

• Sewing Region Σ1: one smooth vector field X (resp., Y ) push orbits towards Σ1 ⊂ Σ
and the other smooth vector field Y (resp., X) push the orbits away form Σ1 ⊂ Σ.
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• Escaping Region Σ2: the two smooth vector fields X and Y from both sides out of
Σ2 ⊂ Σ push orbits away from Σ2 ⊂ Σ.

• Sliding Region Σ3: the two smooth vector fields X and Y from both sides out of Σ3 ⊂ Σ
push orbits towards Σ3 ⊂ Σ.

Definition 1. The sliding vector field associated to Z = (X,Y ) is the vector field Zs tangent
to Σ3 and defined at q ∈ Σ3 by Zs(q) = m − q with m being the point of the segment joining
q +X(q) and q + Y (q) such that m− q is tangent to Σ3 (see Figure 1).

q

q + Y (q)

q +X(q)

ZΣ(q)

Σ3

Figura 1: Filippov’s convention.

Observe that if q ∈ Σ2 for Z = (X,Y ) then q ∈ Σ3 for −Z = (−X,−Y ). Therefore we can
define the escaping vector field on Σ2 associated to Z by Ze = −(−Z)s. The sewing vector field
associated to Z is the vector field Zw defined in q ∈ Σ1 as an arbitrary convex combination of
X(q) and Y (q), i.e., Zw(q) = λX(q) + (1− λ)Y (q) where λ ∈ [0, 1]. In what follows we use the
notation ZΣ for all these cases.

Let Ωr be the space of vector fields Z : K → R
2 such that Z(q) satisfies (1) when q ∈ K\Σ

and Z(q) = ZΣ(q) when q ∈ Σ. The vector field Z will be called a piecewise smooth vector

field (PSVF for short). The basic results of differential equations, in this context, were stated
by Filippov in [3].

The trajectories of Z in some points of K may present behaviors that need to be distin-
guished. These points will be called Σ−singularities of Z and are divided in two subsets: Σt

and Σp. Any q ∈ Σp is called a pseudo equilibrium of Z if q is an equilibrium point of ZΣ. Any
q ∈ Σt is called a tangential singularity if the trajectory of X (resp., Y ) by q is tangent to Σ.
A tangential singularity q ∈ Σt is a Σ−fold point of X (resp., Y ) if the tangency is quadratic.
Moreover, when the trajectory of X (resp., Y ) by the Σ−fold point belongs to Σ+ (resp., Σ−) we
call it a visible Σ−fold point. When the trajectory of X (resp., Y ) by the Σ−fold point belongs
to Σ− (resp., Σ+) we call it an invisible Σ−fold point.

2 Regularization

In this section we present the concept of ǫ−regularization of PSVFs. It was introduced by
Sotomayor and Teixeira in [7]. The method consists in the analysis of the regularized vector field
which is a smooth approximation of the original PSVF. Using this process we get a 1−parameter
family of vector fields Zǫ ∈ Xr such that for each ǫ0 > 0 fixed Zǫ0 is equal to X (resp., Y ) in all
points of Σ+ (resp., Σ−) whose distance to Σ is bigger than ǫ0.

Definition 2. A C∞−function ϕ : R −→ R is a transition function if ϕ(x) = −1 for x 6 −1,
ϕ(x) = 1 for x > 1 and ϕ′(x) > 0 if x ∈ (−1, 1). The ǫ−regularization of Z = (X,Y ) is the
1−parameter family Zǫ ∈ X

r given by

Zǫ(q) =

(

1

2
+
ϕǫ(f(q))

2

)

X(q) +

(

1

2
−
ϕǫ(f(q))

2

)

Y (q). (2)

with ϕǫ(x) = ϕ(x/ǫ), for ǫ > 0.
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3 Singular Perturbations

Definition 3. Let U ⊆ R
2 be an open subset and take ǫ > 0. A singular perturbation problem

in U (SP−Problem) is a differential system which can be written like

x′ = dx/dτ = l(x, y, ǫ), y′ = dy/dτ = ǫm(x, y, ǫ) (3)

or equivalently, after the time re−scaling t = ǫτ

ǫẋ = ǫdx/dt = l(x, y, ǫ), ẏ = dy/dt = m(x, y, ǫ), (4)

with (x, y) ∈ U and l,m smooth in all variables.

The understanding of the phase portrait of the vector field associated to a SP−problem is
the main goal of the geometric singular perturbation theory. System (3) is called the fast system,
and (4) the slow system of the SP−problem. Observe that for ǫ > 0 the phase portraits of
the fast and the slow systems coincide. For ǫ = 0, let S be the set S = {(x, y) : l(x, y, 0) = 0}
of all singular points of (3). We call S the slow critical manifold of the SP−problem and it
is important to notice that equation (4) defines a dynamical system, on S, called the reduced
problem:

l(x, y, 0) = 0, ẏ = m(x, y, 0).

Combining results on the dynamics of these two limiting problems, with ǫ = 0, one obtains
information on the dynamics of Zǫ for small values of ǫ. We refer to [2] for an introduction to
the general theory of singular perturbations.

4 Statement of the main result

The main result of this work is the following:

Theorem 1. Consider Z(x, y) = Zµ(x, y) = (Xµ(x, y), Yµ(x, y)) ∈ Ωr where either µ = λ ∈ R

or µ = (λ, ε) ∈ R
2. Consider that q = (xq, yq) ∈ Σ is a Σ−fold point of both Xµ and Yµ when

µ = 0 or µ = (0, 0). Then there exists a singular perturbation problem

θ′ = α(r, θ, y, µ) , y′ = rβ(r, θ, y, µ) , (5)

with r ≥ 0, θ ∈ (π/4, 3π/4), y ∈ Σ, α and β of class Cr such that the following statements holds:

(a) For all small neighborhood U of q in Σ the region (Σ2 ∪Σ3)∩ (U −{yq}) is homeomorphic
to the slow critical manifold α(0, θ, y, µ) = 0 of (5) where y ∈ (U − {yq}).

(b) The vector field ZΣ, on (Σ2 ∪ Σ3) ∩ (U − {yq}), and the reduced problem of (5), with
y ∈ (U − {yq}), are topologically equivalent.

(c) The slow critical manifold α(0, θ, y, 0) = 0 of (5), where y = yq, has just an horizontal
component, i.e., α(0, θ, yq, 0) = 0 can be identified with {(θ, y) | θ ∈ (π/4, 3π/4) , y = yq}.
Moreover, this configuration is structurally unstable.

The unfolding of (5) produces the same topological behaviors as the unfolding of the corres-
ponding normal forms of Zλ presented in Table 1 and in Equation (7).

Observe that Theorem 1 generalizes Theorem 1.1 of [5], because here we allow that both X
and Y can have a quadratic contact with Σ at a point q. In fact, if at most one of the vector
fields X or Y presents a quadratic contact with Σ at q then Theorem 1.1 of [5] says that there
exists a singular perturbation problem such that the sliding region is homeomorphic to the slow
critical manifold and the sliding vector field is topologically equivalent to the reduced problem.
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5 Proof of the main result

In this section we analyze the dynamics of a PSVF around a point q which is a Σ−fold point of
both X and Y . We say that q is a Fold−Fold singularity of Z ∈ Ωr.

The content of this section proves Theorem 1.
We divide the fold−fold singularities in three types according with the contact between X,Y

and Σ:

(a) Elliptic case: q is an invisible Σ−fold point of both X and Y . See Figure 2 (a).

(b) Hyperbolic case: q is a visible Σ−fold point of both X and Y . See Figure 2 (b).

(c) Parabolic case: q is an invisible Σ−fold point of X (resp., Y ) and a visible Σ−fold point
of both Y (resp., X). See Figure 2 (c).

X XXXY YYY

xxxx

yyyy

(a) (b) (c.1) (c.2)

Figura 2: Fold−fold singularities.

Consider the parameter λ ∈ (−1, 1). Specific topological normal forms of the hyperbolic and
parabolic fold−fold singularities are given in Table 1. A specific topological normal form of the
elliptic fold−fold singularity is given in Subsection 5.3.

Hyperbolic Parabolic − Kind 1 Parabolic − Kind 2

Xλ(x, y) = (y − λ,−1) Xλ(x, y) = (y − λ, 2) Xλ(x, y) = (y − λ,−2)
Y(x, y) = (−y,−1) Y(x, y) = (−y,−1) Y(x, y) = (y,−1)

Tabela 1:

5.1 Hyperbolic Case

Consider the topological normal form of the hyperbolic fold−fold singularity given in Table 1.
The regularized vector field is given by

ẋ = −
λ

2
+ ϕ

(x

ǫ

)

(

−λ+ 2y

2

)

, ẏ = −1.

By the polar blow up we get

rθ̇ = sin θ

(

λ

2
+ ϕ(cot θ)

λ− 2y

2

)

, ẏ = −1.

Putting r = 0 the fast dynamics is determined by the system

θ′ = sin θ

(

λ

2
+ ϕ(cot θ)

(

λ− 2y

2

))

, y′ = 0 ;

and the slow dynamics on the slow critical manifold is determined by the reduced system
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λ

2
+ ϕ(cot θ)

(

λ− 2y

2

)

= 0 , ẏ = −1.

In this case we obtain the explicit expression for the slow manifold:

y(θ) =
λ(1 + ϕ(cot θ))

2ϕ(cot θ)
. (6)

Observe that, the slow critical manifold y(θ) is not defined for θ0 such that ϕ(cot θ0) = 0. So,
for λ 6= 0, y(θ) has two branches and satisfies:

(a) lim
θ−→θ−

0

y(θ) = −∞ for λ < 0 and lim
θ−→θ−

0

y(θ) = +∞ for λ > 0;

(b) lim
θ−→θ+

0

y(θ) = +∞ for λ < 0 and lim
θ−→θ+

0

y(θ) = −∞ for λ > 0.

(c) For λ = 0 the slow critical manifold is given implicitly by yϕ(cot θ) = 0, that is, {(θ, y) | θ =
θ0} ∪ {(θ, y) | y = 0} is the slow manifold.

0

0
0

Xλ

Xλ Xλ

θ0

θ0 θ0

λ < 0 λ = 0

λ > 0

Y

Y Y

y

y y

λ

λ

π
4

π
4

π
4

π
2

π
2

π
2

3π
4

3π
4

3π
4

x

x x

C

C

C

Figura 3: Slow manifold depending on the parameter λ.

The dynamics on the slow critical manifold is given by ẏ = −1. Therefore, there are not
critical points. See Figure 3.

5.2 Parabolic case

Consider the topological normal form of the parabolic−Kind 1 (the analysis of the Kind 2 is
analogous) fold−fold singularity given in Table 1.

Repeating the analysis of Section 5.1 we obtain that the fast dynamics is determined by the
system

θ′ = sin θ

(

λ

2
+ ϕ(cot θ)

(

λ− 2y

2

))

, y′ = 0 ;
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and the slow dynamics on the slow critical manifold is determined by the reduced system

λ+ ϕ(cot θ)(λ− 2y) = 0 , ẏ =
1

2
+

3

2
ϕ(cot θ).

The dynamics on the slow critical manifold is given by ẏ = 1/2 + 3ϕ(cot θ)/2. For λ < 0
(respectively λ > 0) it presents a repeller critical point (respectively an attractor critical point).
For λ = 0 the slow critical manifold is composed by two branches. See Figure 4.
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C

Figura 4: Bifurcation Diagram of the Parabolic−Kind 1 Fold−Fold Singularity.

5.3 Elliptic case

In this case, associated to the PSVF there exist a first return map ψZ(p). A similar analysis to
that one presented in Section 5.1 can be performed and we conclude that a normal form of the
PSVF with this behavior is

Zλ,ε(x, y) =

{

Xλ(x, y) = (y − λ, 1), if (x, y) ∈ Σ+,
Yε(x, y) = (hε2(x, y), g

ε
2(x, y)), if (x, y) ∈ Σ−

(7)

where the smooth function hε2 and gε2 satisfies the conditions (a), (b) and (c) below:

(a) hε2(0) = 0;

(b) hε2(0)
d

dx
hε2(0) + gε2(0)

d

dy
hε2(0) 6= 0;

(c)
∫ t∗

0
gε2(s) ds = (2 + ε)y +O(y2).

The hypotheses expressed in Item (d) above give us sufficient conditions to get the unfolding
of the first return map ψZλ

.
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5.4 Proof of Theorem 1

Consider a PSVF Zλ = (Xλ, Y ) where λ ∈ R is a parameter. If with the variation of λ ∈ (−ε, ε),
the following behaviors are observable then we consider that Zλ presents a bifurcation, where
ε > 0 and small. Consider λ+ ∈ (0, ε) and λ− ∈ (−ε, 0). The behaviors are:

(i) A change of stability on Σ, i.e., where Zλ+ has a sliding region Σ3 the PSVF Zλ− has an
escaping region Σ2.

(ii) A change of stability on ẏλ, i.e., there are components of Σ such that the induced flow on
the slow manifold is such that ẏλ+ > 0 and ẏλ− < 0.

(iii) A change of stability of the Σ−singularity, i.e., Zλ+ presents an attractor equilibrium and
Zλ− presents a repeller requilibrium.

(iv) A change of orientation on Σ1 (the sewer region), i.e., Zλ+ and Zλ− presents distinct
orientations on Σ1.

In face of these previous observations, Theorem 1 follows straightforward from Section 5.
Note that, as we give the topological behavior of the cases λ < 0, λ = 0 and λ > 0 it is easy

to construct the bifurcation diagram of (5) when λ ∈ R.
The case µ = (λ, ε) ∈ R

2 is used in Subsection 5.3 with analogous results.

Acknowledgments. The first author is partially supported by FAPESP−BRAZIL, grant
2012/00481-6. This work is partially realized at UFG/Brazil as part of projects number 35796
and 35797.

Referências

[1] C.A. Buzzi, P.R. da Silva and M. A. Teixeira, A singular approach to discontinuous
vector fields on the plane, Journal of Differential Equations, 231 (2006), 633-655.

[2] N. Fenichel, Geometric singular perturbation theory for ordinary differential equations,
Journal of Differential Equations 31 (1979), 53–98.

[3] A.F. Filippov, Differential equations with discontinuous righthand sides, Mathematics and
its Applications (Soviet Series), Kluwer Academic Publishers-Dordrecht, 1988.

[4] J. Llibre, P.R. Silva and M.A. Teixeira, Regularization of discontinuous vector fields
via singular perturbation, J. Dynam. Differential Equation 19 (2006), 309-331.

[5] J. Llibre, P.R. Silva and M.A. Teixeira, Sliding vector fields via slow−fast systems,
Bulletin of the Belgian Mathematical Society Simon Stevin 15-5 (2008), 851-869.

[6] J. Llibre and M.A. Teixeira, Regularization of discontinuous vector fields in dimension
three, Discrete Cont. Dynam. Systems 3 (1997), 235-241.

[7] J. Sotomayor and M.A. Teixeira, Regularization of discontinuous vector fields, Inter-
national Conference on Differential Equations, Lisboa (1996), 207-223.

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 3, N. 1, 2015.

DOI: 10.5540/03.2015.003.01.0021 010021-7 © 2015 SBMAC

http://dx.doi.org/10.5540/03.2015.003.01.0021

