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Resumo: Three term recurrence formula has been an important tool in the studies of orthogo-
nal polynomials on the real line. Positive chain sequences also play an important role in these
studies. In recent years we have realized that the use of a different type of three term recur-
rence formula in combination with the use of positive chain sequences is also very important for
studying the properties of orthogonal polynomials on the unit circle. In this text we give some
new connection that exists between orthogonal polynomials on the unit circle and para-orthogonal
polynomials given by three term recurrence formula.
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1 Introduction

One of the important properties of orthogonal polynomials on the real line (see [3, 6, 8]) is that
they satisfy a three term recurrence formula. This property has been thoroughly explored by
many for studying the properties of these polynomials and positive chain sequences have been
a important ally in this exploration.

Following the definition adopted by Chihara [3], we say that {dn}∞n=1 is a positive chain
sequence if there exists a second sequence {gn}∞n=0 such that

i) 0 ≤ g0 < 1, 0 < gn < 1 for n ≥ 1;

ii) dn = (1− gn−1)gn for n ≥ 1.
(1.1)

This definition is slightly more restrictive than the definition used for general chain sequences
by Wall [9], where any of the gn (n ≥ 1) is also allowed to take the value zero.

The sequence {gn}∞n=0 is called a parameter sequence of the positive chain sequence {dn}∞n=1.
In general the parameter sequence of a positive chain sequence is not unique. Every positive
chain sequence has a minimal parameter sequence {mn}∞n=0 uniquely determined by the condition
m0 = 0. Every positive chain sequence {dn}∞n=1 also has a maximal parameter sequence {Mn}∞n=0

which is characterized by the condition if g0 > M0 then {gn}∞n=0 generated by (ii) of (1.1) does
not satisfy (i) of (1.1). Wall’s criteria for {Mn}∞n=0 to be the maximal parameter sequence is

∞∑
n=1

M1M2 · · ·Mn

(1−M1)(1−M2) · · · (1−Mn)
=∞.

If the maximal parameter sequence of a chain sequence coincide with its minimal parameter
sequence, then we say that the chain sequence is a single parameter chain sequence.
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In recent years we have realized that a different type of three term recurrence formula,
combined with positive chain sequences, is also a very useful tool for studying the properties of
orthogonal polynomials on the unit circle (OPUC). Applications that stem from these studies
include quadrature formulas on the unit circle, which we will not be treating in the present text.

The three term recurrence formula in our studies is the following.

Rn+1(z) =
[
(1 + icn+1)z + (1− icn+1)

]
Rn(z)− 4dn+1zRn−1(z), n ≥ 1, (1.2)

with R0(z) = 1 and R1(z) = (1 + ic1)z + (1− ic1), where

{cn}∞n=1 is a sequence of real numbers
and

{dn}∞n=1 is a positive chain sequence.

The following result was established in [5].

Theorem 1.1 [5] The polynomial Rn has n simple zeros on the open unit circle |z| = 1, z 6= 1,
and denoting these zeros by eiθn,j , j = 1, 2, . . . , n, then there holds the interlacing property

0 < θn+1,1 < θn,1 < θn+1,2 < · · · < θn,n < θn+1,n+1 < 2π,

for n ≥ 1. Moreover,

a) if ck > 0 for 1 ≤ k ≤ n and čn = min
1≤k≤n

ck then

θn,n < 2π − 2 arccos
( 1√

1 + č2n

)
;

b) if ck < 0 for 1 ≤ k ≤ n and ĉn = max
1≤k≤n

ck then

2 arccos
( 1√

1 + ĉ2n

)
< θn,1.

The above fact that the zeros of Rn are simple and that they interlace with the zeros of Rn+1

is very important for obtaining the results given in this text. We remark that this fact is also
important from the point of view of obtaining positive quadrature formulas on the unit circle
which are equivalent to the Gaussian quadrature formulas on the real line.

In terms of a certain sequence of OPUC, say {Sn}, the polynomials Rn can be given by
the combination Sn(z) + τnS

∗
n(z), where τn is such that |τn| = 1 and S∗n(z) = znSn(1/z) are

the reciprocal polynomials (see equation (2.5) in the present text). Combinations of the type
Sn(z) + τnS

∗
n(z) are known in the literature of OPUC as para-orthogonal polynomials on the

unit circle. Thus, the choice of the name para-orthogonal in the title of this text.

2 Associated moment functional and measures

In [4] and [2] it was established that associated with the above three term recurrence formula
one can associate a moment functional N such that the polynomials {Rn} satisfy the following
orthogonality property.

N [z−n+kRn(z)] = 0, k = 0, 1, . . . , n− 1.

Moreover, with an appropriate choice of an additional element d1 to the positive chain sequence
{dn+1}∞n=1, one can also associate a positive measure µ̃ on the unit circle such that

N [`(z)] =

∫
C
`(ζ) (1− ζ)dµ̃(ζ).

The objective of this text is to present another positive measure that can be associated with
the above three term recurrence formula and, in particular, to give the following result.
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Theorem 2.1 Given the three term recurrence formula (1.2) there exists a nontrivial probability
measure µ̂ on the unit circle such that for any Laurent polynomial `,∫

C
`(ζ)dµ̂(ζ) =

1 + c21
4d1

N
[
`(z)(1− z−1)

]
.

Here, N is the moment functional stated above. The sequence of monic OPUC {Ŝn} with respect
to the measure µ̂ are

Ŝn(z) =
Rn+1(z)− 2(1−mn)Rn(z)

(z − 1)
∏n+1
k=1(1 + ick)

, n ≥ 0. (2.3)

Here, {mn}∞n=0, where mn = 1−Rn+1(1)
2Rn(1)

, n ≥ 0, is the minimal parameter sequence of {dn+1}∞n=1.

If the measure µ̂ is such that the principal value integral I = −
∫
C ζ(ζ − 1)−1dµ̂(ζ) exists then

1 + c21
4d1

N
[
`(z)

]
= −
∫
C
`(ζ)

ζ

ζ − 1
dµ̂(ζ) + i t `(1),

where t = −Im[(1+ic1)I]. In particular, if the positive chain sequence {dn+1}∞n=1 is not a single
parameter chain sequence then the measure µ̂ is such that Im[(1 + ic1)I] = 0.

Proof. The proof of this Theorem is rather extensive. It is based on the correspondence and
convergence properties of the rational functions

(1 + ic1)

2zRn(z)

[
Rn(z) +

(1− ic1)
2d1

(z − 1)Qn(z)
]
, n ≥ 1,

where the polynomials {Qn} satisfy the same recurrence relation (1.2), but with the initial
conditions Q0(z) = 0 and Q1(z) = 2d1. Here, d1 6= 0. It is crucially important to our analysis
that the zeros of the polynomials Rn are as established in Theorem 1.1. The idea behind the
proof is similar to the one given in [2], where the analysis were based on the correspondence and

convergence properties of the rational functions Rn(z)−Qn(z)
(z−1)Rn(z)

, n ≥ 1.

Example given in Section 3 to illustrate the above theorem is also of great importance because
of its explicit nature.

Since the polynomials Rn are such that R∗n(z) = znRn(1/z) = Rn(z), n ≥ 0, we also have
from Theorem 2.1 that

Ŝ∗n(z) =
Rn+1(z)− 2(1−mn)zRn(z)

(1− z)
∏n+1
k=1(1− ick)

, n ≥ 0. (2.4)

By elimination of Rn+1 using (2.3) and (2.4),

1∏n
k=1(1 + ick)

Rn(z) =
1 + icn+1

2(1−mn)

[
Ŝn(z) + τn+1 Ŝ

∗
n(z)

]
, n ≥ 0, (2.5)

where τn =
∏n
n=1

1−icn
1+icn

, n ≥ 1. Similarly, by elimination of Rn using (2.3) and (2.4),

1∏n+1
k=1(1 + ick)

Rn+1(z) = zŜn(z) + τn+1 Ŝ
∗
n(z), n ≥ 0. (2.6)

Observe that the polynomials appearing on both sides of (2.5) and (2.6) are monic polyno-
mials. Hence, we can also write (2.5) in the form

1∏n
k=1(1 + ick)

Rn(z) =
1

1− τn+1α̂n−1

[
Ŝn(z) + τn+1 Ŝ

∗
n(z)

]
, n ≥ 0.
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Moreover, using in the above expression the well known two term recurrence formula for the
OPUC Ŝn,

1∏n
k=1(1 + ick)

Rn(z) =
[
zŜn−1(z) +

τn+1 − α̂n−1
1− τn+1α̂n−1

Ŝ∗n−1(z)
]
, n ≥ 1.

Here, αn−1 = −Ŝn(0), n ≥ 1 are known as the Verblunsky coefficients associated with the

measure µ̂. Comparing the above formula for Rn with (2.6) we have τn = τn+1−α̂n−1

1−τn+1α̂n−1
, n ≥ 1, or

equivalently,

τn+1 =
τn + α̂n−1
1 + τnα̂n−1

, n ≥ 1.

The above recurrence formula for τn is useful if we can find an expression for τ1 in terms of the
measure µ̂.

Assuming I = −
∫
C(ζ − 1)−1ζdµ̂(ζ) exists, from N

[
z−1R1(z)

]
= 0 and τ1 = (1− ic1)/(1 + ic1),

the required expression for τ1 is

τ1 =
I + it

I − it
.

From τn =
∏n
k=1(1− ick)/(1 + ick), n ≥ 1, and the recurrence relation for {τn},

c1 = i
τ1 − 1

τ1 + 1
, cn+1 =

Im(τn+1α̂n−1)

1−Re(τn+1α̂n−1)
=
Im(τnα̂n−1)

1 +Re(τnα̂n−1)
, n ≥ 1.

From the expression for the Verblunsky coefficients in Theorem 2.1,

1 + τnα̂n−1 =
2mn

1− icn+1
and 1− τn+1α̂n−1 =

2(1−mn)

1 + icn+1
n ≥ 1.

Hence,

mn =
1

2

|1 + τnα̂n−1|2

1 +Re(τnα̂n−1)
=

1

2

1− |τn+1α̂n−1|2

1−Re(τn+1α̂n−1)
, n ≥ 1,

1−mn =
1

2

1− |τnα̂n−1|2

1 +Re(τnα̂n−1)
=

1

2

|1− τn+1α̂n−1|2

1−Re(τn+1α̂n−1)
, n ≥ 1,

and dn+1 = (1−mn−1)mn, n ≥ 1, with m0 = 0.

3 Example

Let the real sequences {cn}∞n=1 and {dn+1}∞n=1 be given by

cn =
η

λ+ n
, dn+1 =

1

4

n(2λ+ n+ 1)

(λ+ n)(λ+ n+ 1)
, n ≥ 1,

where λ, η ∈ R and λ > −1.
Observe that dn+1 = (1−mn−1)mn, n ≥ 1, where

mn =
n

2(λ+ n+ 1)
, n ≥ 0. (3.7)

Hence, with our assumption λ > −1, the sequence {dn+1}∞n=1 is a positive chain sequence with
{mn}∞n=0 as its minimal parameter sequence.

The polynomials Rn obtained from the above sequences {cn} and {dn+1}, together with the
recurrence formula (1.2), are

Rn(z) =
(2λ+ 2)n
(λ+ 1)n

2F1(−n, b+ 1; b+ b+ 2; 1− z), n ≥ 1, (3.8)
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where b = λ+ iη. The nth degree Hypergeometric polynomial 2F1(−n, b+ 1; b+ b+ 2; 1− z) is
defined by

2F1(−n, b+ 1; b+ b+ 2; 1− z) =

∞∑
k=1

(−n)k(b+ 1)k

(b+ b+ 2)k k!
(1− z)k =

n∑
k=1

(−n)k(b+ 1)k

(b+ b+ 2)k k!
(1− z)k,

where (a)0 = 1 and (a)n = a(a+ 1) · · · (a+ n− 1), n ≥ 1 are the Pochhammer symbols.
With d1 6= 0 arbitrary, by considering the series expansion of 2F1(1,−b; b + 2; z) via its

Gauss type continued fraction expansion, we have

Qn(z)

Rn(z)
∼ 2d1

1− ic1
2F1(1,−b; b+ 2; z) = −ν1 − ν2z − ν3z2 − . . . ,

where

νn = d1
b+ b+ 2

b+ 1

(−b− 1)n

(b+ 1)n
, n ≥ 1. (3.9)

From these, for the moment functional N we obtain

N [`(z)] =

∫
C
`(ζ) dψ(b; ζ), (3.10)

for all Laurent polynomials `, where

dψ(b; z) = d1
i |Γ(b+ 1)|2(b+ b+ 2)

2π Γ(b+ b+ 2)
(−z)−b−1(1− z)b+b+1dz.

Here, the branch cuts in (−z)−b = (e−iπz)−b and (1 − z)b+b =
(
e−iπ(z − 1)

)b+b
are along the

positive real axis.
For the proofs of the above results, starting from (3.8), we cite for example [2] and [4].

However, for the required analysis in [2] and [4], it was necessary to assume that λ > −1/2. We
remark that when λ > −1/2 the maximal parameter sequence {M1,n}∞n=0 of {dn+1 = d1,n}∞n=1

is

M1,n =
1

2

2λ+ n+ 1

λ+ n+ 1
, n ≥ 0.

Now, the nontrivial probability measure µ̂ that follows from Theorem 2.1 is

dµ̂(ζ) =
|Γ(b+ 2)|2

2π Γ(b+ b+ 3)
(−z)−b−2(1− z)b+b+2dz. (3.11)

Observe that (3.11) can also be written in the equivalent form

dµ̂(eiθ) =
2b+b+2|Γ(b+ 2)|2

2π Γ(b+ b+ 3)
e(π−θ)Im(b+1)[sin2(θ/2)]Re(b+1)dθ.

The moments associated with µ̂ are

µ−n = µn =

∫
C
ζ−ndµ̂(ζ) =

1 + c21
4d1

[νn − νn+1] =
(−b− 1)n

(b+ 2)n
, n = 0, 1, 2, . . . .

Hence, from results established in [7] the associated monic OPUC are

Ŝn(z) =
(b+ b+ 3)n

(b+ 2)n
2F1(−n, b+ 2; b+ b+ 3; 1− z), n ≥ 1.

The above expression can also be easily derived from (2.3) and (3.8).
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Recall that we have assumed λ > −1 and for the integral I =
∫
C(ζ − 1)−1ζ dµ̂(ζ) we have

from (3.9) and (3.10) that

I =
b+ 1

b+ b+ 2
.

Note that when λ > −1/2 the maximal parameter sequence {M1,n}∞n=0 of {dn+1}∞n=1 is
different from its minimal parameter sequence {mn}∞n=0. Since the integral J =

∫
C ζ(1−ζ)−1(ζ−

1)−1dµ̂ exists when λ > −1/2, this is exactly what was established in Theorem 2.1.
However, when −1/2 ≥ λ > −1, the integral J =

∫
C ζ(1−ζ)−1(ζ−1)−1dµ̂ does not exist and,

hence from Theorem 2.1, the minimal parameter of {dn+1}∞n=1 must be equal to its maximal
parameter sequence. This we can verify as follows.

From (3.7) we have
∞∑
n=1

[ n∏
k=1

mk

1−mk

]
=

∞∑
n=1

(1)k
(2λ+ 3)k

.

The infinite series on the right hand side can also be written as

2F1(1, 1; 2λ+ 3; 1) =

∞∑
k=0

(1)k(1)k
(2λ+ 3)kk!

,

which is (see [1, p. 62]) convergent if λ > −1/2 and divergent otherwise. Thus, from Wall’s
criteria for maximal parameter sequences we establish that the minimal parameter sequence
{mn} is also the maximal parameter sequence if −1/2 ≥ λ > −1.
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