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Abstract. Source identification methodologies use inverse problems techniques combined with a
dispersion model and observational data to estimate relevant source parameters. This work proposes
a time-dependent model to estimate source parameters of multiple point releases. The forward
problem or dispersion model accounts for the time variation of the wind field using a Fourier series
that best fits the wind field time series of the experimental data. The source parameters are
estimated by an adaptive Monte Carlo Markov Chain algorithm.
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1 Introduction

The source estimation of environmental releases is an interdisciplinary field of research involving
applied mathematics, computation, and geophysics. It is usually employed to forecast sudden
potentially harmful emissions in the atmosphere, rivers, lakes, and oceans at local or global scales.
The models include the definition of a forward problem which is a mathematical description of
the related physical processes, usually described by a partial differential equation (PDE). A net
of observational data to feed the model is also necessary. In addition, it is essential to choose a
technique to solve the inverse problem.

The main difficulties concerning source identification are the intrinsic ill-posedness of source
identification, the correct description of the relevant physical processes involved, the accuracy of the
methodologies to solve both the inverse and the forward models, and the noise in the observational
data [6] are the main challenges. Several of these issues have been addressed in the literature. We
recommend [4–6] for more information.

Including more data may partially address the ill-posedness of the inverse problem since it
can reduce the signal to noise ratio. Some of our research [2, 4] were dedicated to the source
identification of multiple atmospheric releases. However, we assumed the stationarity of measured
quantities. An obvious drawback of this procedure is the loss of information.

In this work, by considering a dynamic model for the dispersion and the wind field, we allow
the inversion model to account for more data. This also improves the physical description of the
forward problem. The wind field is given by a truncated Fourier series fitted to observational wind
time series.
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2 Source Estimation Methodology
In this section we describe all the techniques involved in the reconstruction of the source

parameters considering point releases in the Atmospheric Boundary Layer (ABL). We start by
presenting the calibration technique that is based on Bayesian inference, using an adaptive Monte
Carlo Markov Chain (MCMC) algorithm. We then apply the inversion modeling to a dataset from
the Fusion Field Trial 2007 (FFT07) experiment [13].

2.1 The Inversion Modeling Setting
Let C denote the set of concentrations evaluated numerically, using the dispersion model, at

the sensors locations and measuring time instants. The set of experimental concentrations are
denoted by Cexp. Denote by N the number of sensors and time instants where the concentrations
are measured. The discrepancy between the evaluated and experimental concentrations is then
modeled as

ε = ln(C)− ln(Cexp), (1)

where ε is an N -dimensional Gaussian-distributed random variable, with mean zero and covariance
matrix Σ. The N×N -matrix Σ is equal to ξ−1I, where ξ is a non-negative scalar so-called precision
and I is the N ×N identity matrix. Since we are assuming that concentration measurements are
independent, the covariance matrix of ε has the present structure. The logarithm helps to turn
the distribution of the concentration discrepancy close to symmetric.

We want to estimate the location and strength of M emission sources, more precisely, we must
estimate the 4×M -dimensional vector vs containing the parameters of the sources, which is defined
as follows

vs = [xs,1, ys,1, zs,1, Qs,1, . . . , xs,M , ys,M , zs,M , Qs,M ]T , (2)

where (xs,j , ys,j , zs,j) and Qs,j are, respctively, the coordinate and the strength of the jth source,
j = 1, . . . ,M .

Since the precision ξ is unknown, it is included in the set of the quantities that will be estimated.
We define the likelihood function as follows,

P
(
Cexp |ξ,vs

)
∝ ξ

N
2 exp

(
−ξ

2

∥∥ln (C(vs))− ln
(
Cexp

)∥∥2
ℓ2

)
. (3)

We also assume that ξ and vs have independent prior distributions. The prior of ξ, as usual,
is given by the distribution Gamma

(
n0

2 , d0

2

)
. On the other hand, vs has a uniform distribution in

an appropriate set, that will be defined later.
The full conditionals for ξ and vs are given as follows,

P
(
ξ
∣∣vs, Cexp

)
∝ P

(
Cexp |p,vs

)
P (ξ) and P

(
vs

∣∣p, Cexp
)
∝ P

(
Cexp |ξ,vs

)
P (vs). (4)

The functions P (vs) and P (ξ) denote, respectively, the prior probability densities of the quantities
vs and p. The full conditional for the precision ξ is proportional to a Gamma density, since the
prior P (ξ) is Gamma and the likelihood function is Gaussian. Thus, ξ given vs and Cexp has the

distribution Gamma
(

ñ
2 ,

d̃
2

)
, with the parameters ñ = n0+n and d̃ = d0+∥ ln(Cexp)−ln(C(vs))∥2ℓ2 .

The advantage of ξ be Gamma-distributed is the fact that this distribution can be easily sampled by
a Gibbs sampler. To draw samples of ξ and vs, we use the Metropolis in Gibbs MCMC algorithm
[6, 8, 10, 11], which is represented in Algorithm 1.

To make Algorithm 1 adaptive, the Gaussian random walk covariance matrix Z changes to
increase or decrease the covariance accordingly to the discrepancy between concentrations evaluated
with the proposed samples and the experimental data. For more details, see Ref. [6].
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Algorithm 1 Metropolis in Gibbs MCMC algorithm.
1: procedure MCMC Algorithm
2: j = 0,
3: ξj = ξ, vj

s = vs
4: while j ≤ MaxIter do
5: Draw u ∼ N(vj

s , Z)

6: Evaluate ñ and d̃

7: Draw ξj+1 ∼ Gamma

(
ñ

2
,
d̃

2

)
8: Evaluate P

(
vj
s
∣∣∣ξj+1, Cexp

)
and P

(
u
∣∣∣ξj+1, Cexp

)
9: Evaluate β = min

1,
P
(
u
∣∣∣ξj+1, Cexp

)
P
(
vj
s
∣∣∣ξj+1, Cexp

)


10: Draw l ∼ U[0, 1]

11: if l < β then
12: Accept: vj+1

s = u
13: else
14: Reject: vj+1

s = vj
s

15: end if
16: j = j + 1

17: end while

18: end procedure

2.2 The Prior Density for the Source Parameters

Since the number of source parameters is large, we incorporate some prior information to sim-
plify the search for the solutions. Based on an isopleth, i.e., the distribution of the concentrations
through the computational domain in the xy-plane, as well as the wind direction, it is possible to
find a region where the sources must be located. Moreover, also using the isopleth, it is possible to
identify if the sources are located far apart from each other or close to each other. Furthermore,
based on the concentration distribution in the domain, we assume that the emissions have similar
strengths and are close to each other. If we order the sources, the parameters of the first emission
must vary inside the set Λ, which is defined below:

Λ = [xmin, xmax]× [ymin, ymax]× [zmin, zmax]× [Qmin, Qmax]. (5)

Then, we define the parameters of the other sources in terms of the parameters of the first emission,
i.e.,

[xj , yj , zj , Qj ]
T = [x1 + lx,j , y1 + ly,j , z1 + lz,j , Q1 + lQ,j ]

T , j = 1, . . . ,M, (6)

where the vector [x1, y1, z1, Q1]
T contains the parameters of the first source, and the non-negative

scalars lx,j , ly,j , lz,j , and lQ,j , j = 1, . . . ,M , represent the distance between the parameters of
the jth source to the first emission. These distances can vary in preset intervals of the form
[lx,min, lx,max], j = 1, . . . ,M .

Based on such definitions implied by the prior information, we assume that the prior density
of vs is the uniform density in the set Λ× LM−1, with

L = [lx,min, lx,max]× [ly,min, ly,max]× [lz,min, lz,max]× [lQ,min, lQ,max]. (7)

The power M − 1 in the definition of the prior density represents the Cartesian product of the set
L with itself M − 1 times. We use truncation to make the MCMC algorithm proposals to stay
inside the set Λ× LM−1.

2.3 The Forward Problem

The dispersion model is described by the following advection-diffusion Partial Differential Equa-
tion (PDE)
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∂C

∂t
+ u · ∇C −∇ · (K∇C) =

M∑
j=1

Sj in Ω× [0, T ] (8)

where C = C(x, y, z, t) [g/m3] is the time averaged concentration. The computational domain
is represented by Ω and it is within the Atmospheric Boundary Layer (ABL). The wind field is
represented by u, and the the tensor K accounts for the ABL turbulence state, and it is a diagonal
matrix with the non-zero components Kx, Ky, and Kz which represent the turbulent diffusion in
the x, y and z directions, respectively. The right-hand side of the equation corresponds to the
contribution of the set of point source emissions, where M represents the total number of sources,
and Sj is the jth source, defined as

Sj(x, y, z, t) = Qs,jδ(x− xs,j)δ(y − ys,j)δ(z − zs,j)I[tsj −βj ,tsj +βj ]
(t),

wherein [xs,j , ys,j , zs,j ]T are the source locations, Qs,j is the emission rate, j = 1...M and δ
is the Dirac delta distribution. Finally, I[tsj −βj ,tsj +βj ]

(t) represents the indicator (characteristic)
function of the jth emission time interval [tsj − βj ; t

s
j + βj ], with βj > 0.

To complete the forward problem definition, (8) can be associated to the following boundary
conditions:

n · ∇C = 0, (9)

in which the vector n represents the outward normal on the boundaries of Ω at z = z0 and z = H,
and

C = 0 elsewhere, (10)

and the following initial condition

C = C0 in Ω for t = 0, (11)

wherein z0 represents the surface roughness length and H denotes the upper boundary of the
computational domain Ω. To avoid solving Equation (8) for all the iterations of Algorithm 1,
we take advantage of the linearity of Eq. (8) to establish a relationship between the sources
and the sensors through the so-called adjoint state PDE. This procedure considerably reduces the
computational cost of the simulations, since the direct problem is solved only once for all the
iterations. Representing the observed concentration at the kth sensor, at the time instant T by
Cexp(xk, yk, zk, T ), it follows that

Cexp(xk, yk, zk, T ) =

M∑
j=1

∫ T

0

∫
Ω

C∗
kSjdΩdt =

M∑
j=1

⟨C∗
k , Sj⟩, (12)

where C∗
k is the solution of the following adjoint-state PDE [9]:

−∂C∗

∂t
− u · ∇C∗ −∇ · (K∇C∗) = Sk, (13)

wherein Sk(x, y, z, t) = δ(x−xk)δ(y−yk)δ(z−zk)I[tmin,tmax](t), with (xk, yk, zk), the spatial coordi-
nates of the kth sensor for N sensors as well as a sampling time interval [tmin, tmax]. The terminal
and boundary conditions associated to Eq. (13) are the following:

C∗ = 0 on Ω for t = tmax, (14)
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n · ∇C∗ = 0 at z = z0 and z = H, and C∗ = 0 elsewhere. (15)

Again, n denotes the outward normal on the boundary of Ω. In the adjoint-state PDE, the
sensors work as sources. Thus, the concentration at each sensor will be obtained by the scalar
product between the source term and the solution of the PDE (13) according to Eq. (12).

In this work the Finite Element formulation [7] is applied to solve Eq. (12). Here this formulation
is not presented since it is performed in the author’s previous works such as in Refs.[4, 5].

2.4 A Case study

We evaluate the proposed methodology to estimate the source parameters, namely, the source
position and emission rates using the Fusion Field Trial (FFT07) tracer experiment [13]. We briefly
describe the experiments here. More detailed description can be found in [1, 2].

The FFT07 were performed several times, considering different atmospheric conditions and
different number of emissions. In this work, we consider the datasets from Trial 55, in which the
tracer gas propylene (C3H6) was released during 15 minutes at a constant rate from four point
sources 2 meters above the ground level.

During FFT07 trial 55, the tracer gas propylene (C3H6) was released during 15 minutes at a
constant rate from four point sources, located two meters above the ground surface level. After
released, the (C3H6) was sampled over a total of 100 tracer sampling units, arranged over a
rectangular grid sampling of 475 m × 450 m. The sensors were displayed keeping the distance of
50 m from each other.

The FFT07 provides datasets regarding meteorological and concentration measurements to
allow the evaluation of evaluate short-range source identification techniques. The meteorological
variables were recorded during about 50 minutes over different positions at 2, 4, 8, 16 and 32 meters
above the ground level. The high frequency datasets of wind and temperature were employed to
calculate the turbulent fluxes of sensible heat and momentum to further compute the Monin-
Obukhov length (L), the friction velocity (u∗) and the surface roughness length (z0). Those are
input parameters used to obtain the vertical turbulent diffusion profile.

Details concerning the datasets applied to feed the forward model can be found in Ref.[4]. In
order to avoid to solve the Navier-Stokes equations over the computational domain, we derive the
wind field from the measured wind time series and obtain its best fit to a Fourier series. The
resulting wind profile was applied to perform the simulations.

3 Results and Discussion

Next, we present the numerical evaluation of the Algorithm 1 using the FFT07 datasets. The
numerical evaluation of the forward problem in Eqs. (13)–(15) is omitted here and we refer the
reader to Ref. [1].

The sets Λ and L that compose the set Λ×L3, see Eqs. (5)–(7), where the prior density of the
vector of source parameters is defined, are the following,

Λ = [−100, 100]×[50, 600]×[0.013, 50]×[0, 30] and L = [−25, 25]×[−250, 250]×[−1.5, 1.5]×[−5, 5],

where the unit for the spatial parameters is meter and the unit for the source strengths is g/s.
These sets are defined based on the wind direction and on the isopleth in Figure 1 in Ref. [3]. It
is worth mentioning that the true source locations are inside the resulting searching region.

To initialize Algorithm 1, we draw an uniformly-distributed sample for the source parameters
inside the search region Λ × L3, and the initial step for p is generated by the prior distribution
Gamma(n0

2 , d0

2 ) with n0 = 10−3 and d0 = 10−3. The resulting Markov Chain has a total of 50

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 9, n. 1, 2022.

DOI: 10.5540/03.2022.009.01.0228 010228-5 © 2022 SBMAC

http://dx.doi.org/10.5540/03.2022.009.01.0228


6

thousand states. The first 10 thousand states are defined as the burn-in set. In the remaining
states, 800 states were selected, since we used a step-size of 50 states. The summary statistics of
the resulting chain can be found in Table 1.

Parameter True Min. Q1 Median Q3 Max. GR Test
xs,1 [m] 33.0 -51.1 -24.52 -18.94 -12.95 9.3 1.00
ys,1 [m] 171 50.0 76.9 100 120 208 1.02
zs,1 [m] 2.00 3.80 9.89 11.3 12.6 19.0 1.00
Qs,1 [g/s] 11.4 10.1 13.8 14.6 15.5 18.6 1.00
xs,2 [m] 33.8 -26.6 -5.7 -0.3 5.2 27.3 1.00
ys,2 [m] 241 213 286 300 315 381 1.02
zs,2 [m] 2.00 2.37 8.55 9.91 11.3 17.8 1.00
Qs,2 [g/s] 11.4 5.70 9.2 10.0 10.8 14.3 1.00
xs,3 [m] 30.0 -12.3 14.3 20.01 25.81 50.97 1.00
ys,3 [m] 313 266 346 366 386 466 1.03
zs,3 [m] 2.00 2.32 8.72 10.1 11.5 17.9 1.00
Qs,3 [g/s] 4.65 2.20 5.70 6.57 7.50 10.8 1.00
xs,4 [m] 26.0 -11.9 9.9 15.6 21.4 41.0 1.00
ys,4 [m] 384 375 488 507 527 593 1.01
zs,4 [m] 2.00 1.82 7.84 9.28 10.6 17.1 1.00
Qs,4 [g/s] 11.4 10.0 13.7 14.5 15.4 19.1 1.00

p - 0.01 0.02 0.02 0.02 2.61 1.00

Table 1: Comparison between the true values (True) and the summary statistics of the chains of the unknown
parameters. The summary is given by the minimum value (Min.), the first quartile (Q1), the median value (Median),
the third quartile (Q3), and the maximum value (Max.). We also include the value of the Gelman-Rubin convergence
test (GR Test) for each variable, whose optimal value is 1.00.

As Tab. 1 shows, the values provided by the Gelman-Rubin test [12] are close or equal to 1.00,
the ideal value. It indicates the convergence of the chains. Moreover, the major part of the true
source parameters are inside the sample regions. On the other hand, if the source parameters
are outside the sample regions, they are placed in the neighborhood of the sample regions. If we
compare the present results with those from Ref. [3], we observe that they are more accurate. This
is probably due to the improvements made in the modelling of the forward operator, that considers
the dynamic change in the wind direction. It is worth mentioning that the present methodology
must be refined so that, the regions defined by the Markov chain states include all the true source
parameters.

4 Concluding Remarks

We used a time-dependent dispersion model that allowed to consider the evolution of the wind
direction in the forward problem and to use time series of measured concentrations in the source
estimation. Such changes considerably improved estimates if we compare with those from Ref. [3].
However, further improvements are still needed in order to find more accurate results.
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