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Nonlinear normal modes of nonuniform �exible beams
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Flexible beams contain geometric nonlinearities emanated from the large displacements and large
rotations of the cross sections. When the geometry of the beam is nonuniform, the equation of
motion becomes complicated to derive, but can be e�ciently approximated using the co-rotational
�nite element method. This paper proposes a procedure to compute nonlinear normal modes (NNM)
of nonuniform �exible beams. The Rosenberg's de�nition of NNM is applied. The periodic solutions
are computed using the Harmonic Balance Method (HBM) and the continuation of the modes
properties with respect to the energy level is performed using the arc-length method. Examples
of clamped-clamped beams with di�erent cross sections variations are presented, illustrating the
respective impacts in the NNMs.
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1 Introduction

For several industries, the dimensions of important structures are being extended to new limits
in order to satisfy their new challenging needs. Those new dimensions led many structures to
exhibit signi�cant nonlinearities in their motion. A typical example of nonlinear structures is the
o�shore pipelines that are being used to explore oil at deep see levels [1]. The extended length of
the pipes turn them into extreme slim beams with signi�cant �exibility. The large displacements
and �nite rotations of the beam's cross sections contribute then for the generation of a geometric
non-linearity in the structure model.

Flexible beams are usually analyzed under the assumption of small strains. This hypothesis
allows this type of structure to be accurately modeled with co-rotational �nite elements. The main
idea of the co-rotational formulation is to decompose the motion of each element as a small elastic
deformation added to a rigid body motion. A local coordinate system is then incorporated to
each element and forced to move with it according to its rigid body part of the motion. Then,
the small deformation is written with respect to this local coordinate system (using typical linear
beam elements), and latter transformed to an inertial frame considering the rigid body motion.
This transformation between frames generates the geometric nonlinear terms in the model that are
associated with the large displacements and rotations of the beam's cross sections. The equation
of motion is then formulated in the inertial coordinate system using the Lagrangian equation.

The novelty in this paper corresponds to the computation of nonlinear normal modes (NNM) of
nonuniform �exible beams. Previous publication of �exible beams modeled with co-rotation beam
elements were restricted to numerical integration of the equation of motion. However, as high-
lighted in [5], the knowledge of NNMs allows a thoroughly understanding of a system's vibratory
response in the nonlinear regime. Here, the Rosemberg's de�nition of NNM is used. He de�ned
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the NNMs as synchronous oscillations of the system, which was later generalized to periodic solu-
tions (non-necessarily synchronous oscillation) to account mode interactions (internal resonances).
In the literature, there are many advanced numerical methods that compute periodic solutions
of mechanical systems. The Harmonic Balance Method (HBM) is perhaps the most popular one
[6]. It approximates the solution of a periodic boundary value problem using a truncated Fourier
series as an Ansatz that satis�es a weak formulation. For a complete computation of the NNMs,
the HBM is then combined with a continuation method that evaluates the periodic solutions for
di�erent energy levels [2].

2 Equation of motion

Several researches have already analyzed the dynamic responses of �exible beams using co-
rotational �nite elements [3, 4]. The main di�erences between them lie in the choice of the inter-
polation functions used in the local frame when computing the kinetic and potential energies of
the system. In this paper, linear interpolation is used to derive the inertial terms (Timoshenko
elements), while cubic interpolation is used to derive the elastic terms (IIE element). A complete
description on how to obtain the equation of motion is given in [8], and it results in

Mq̈+ f (q) = 0, (1)

where M ∈ Rn×n is the mass matrix, f ∈ Rn is the vector with nonlinear elastic forces, q ∈ Rn is
the vector of generalized coordinates and n is the number of degrees of freedom.

Instead of performing a numerical integration of this equation of motion, as already performed
in previous publications, this paper incorporates this co-rotational model in a procedure to solve
periodic boundary value problems.

3 Nonlinear normal modes

For the computation of the NNMs of nonuniform �exible beams, the Rosemberg's de�nition
will be used here. It consists in solutions of periodic boundary value problems of an autonomous
systems. Given the dependency of energy in the responses, NNMs become also depend on the
energy level. Therefore, the periodic solutions must be computed for a pre-de�ned range of ener-
gies, which can be done combining the Harmonic Balance Method (HBM) [6] with the arc-length
continuation method (which is based on a prediction-correction scheme)[7].

The HBM is a popular method used to solve periodic boundary value problems. For the �exible
beam considered in this paper, the periodic boundary value problem can be constructed adding a
periodic boundary restriction to the equation of motion, which leads to:

Solve: Mq̈+ f (q) = 0, t ∈ [0, T ]

With: q(0) = q(T )

q̇(0) = q̇(T ). (2)

Here, T = 2π
Ω is the unknown fundamental period of the solution. Instead of seeking the periodic

solution of Eq. (2) directly, the HBM starts with the de�nition of an Ansatz function qH(t),
written as a truncated Fourier series, that converges to q(t) as the truncation order increases. The
Ansatz is de�ned as

qH(t) =

H∑
k=−H

Qke
ikΩt, (3)
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where H is the truncation order of the series, {Qk}Hk=−H ∈ Cn are the respective Fourier coe�-
cients of the Ansatz and Ω is the fundamental frequency. The vector basis used to span the Ansatz
corresponds to a set of Fourier functions, which are intrinsically periodic, and therefore automat-
ically satisfy the periodic boundary conditions required by Eq. (2). Since the Ansatz is only an
approximation of q(t), a residual r(t) is expected when introducing Eq. (3) into the equation of
motion:

r(t) :=

H∑
k=−H

−ω2k2MQke
ikΩt + f (qH) ̸= 0. (4)

Since the nonlinear elastic force vector, f (qH), is a function of the Ansatz only, it is also periodic.
Therefore, the residual can be expressed as

r(t) =

∞∑
k=−∞

Rk

(
Ω, {Ql}Hl=0

)
eikΩt, (5)

where Rk corresponds to the k-th Fourier coe�cient of the residual.

When projecting the residual into the subspace of the Ansatz (performing a Fourier-Galerking
projection), the time dependency of Eq. (5) is removed. Also, using the orthogonality of the Fourier
functions and imposing that the residual must be perpendicular to the subspace of the Ansatz (i.e.,
balanced up to the H-th harmonic), a system of nonlinear algebraic equation is constructed

Rm

(
Ω, {Ql}Hl=0

)
= 0 for m = −H, . . . ,H. (6)

Since the Fourier coe�cients Rm shares the conjugate mirror property, it is su�cient to solve Eq.
(6) only for m = 0, . . . ,H.

This system of nonlinear algebraic equations is under-determined and requires two additional
equations, one related to a phase restriction and other to an amplitude restriction. A popular
phase restriction consists in

ηp

(
{Ql}Hl=0

)
:=

H∑
l=1

lcTi ℑ{Ql} = 0, (7)

where ci is an unit vector with all components equal to zero, except the i-th entry. This equation
imposes zero initial velocity in the i-th degree of freedom, and therefore restricts the phase of the
periodic solution. Regarding the amplitude normalization, a modal mass normalization considering
all harmonics is adopted here [6]:

ηa

(
{Ql}Hl=0 , ϵ

)
:=

H∑
l=0

(Q∗
l )

T
MQl − ϵ, (8)

where ϵ is the modal mass, a parameter that is related to the desired energy in the system. This
important parameter will be used later as free parameter in the continuation method to compute
the branches of periodic solutions.

The combination of Eq. (6) with Eq. (7) and Eq. (8) leads to the nonlinear system of algebraic
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equation with a unique solution. It can be written in a compact form as

R (x, ϵ) =



R0 (x)
ℜ{R1 (x)}
ℑ {R1 (x)}

...
ℜ{RH (x)}
ℑ {RH (x)}

ηp (x)
ηa (x, ϵ)


= 0. (9)

where x = [Ω,Q0,ℜ{Q1} ,ℑ{Q1} , . . . ,ℜ{QH} ,ℑ{QH}] are the vector of unknowns. The solu-
tion of Eq. (9) is usually found numerically using a Newton type methods.

The system of nonlinear algebraic equations de�ned in Eq. (9) gives a good approximation
of the periodic solution for a speci�c energy level. To completely characterize the NNMs, the
periodic solution must be evaluate for a wide range of energy, i.e., considering ϵ ∈

[
ϵmin, ϵmax

]
.

This can be e�ciently done using a numerical path continuation and using ϵ as free parameter.
The set of solutions at di�erent energy levels creates a periodic solution branch. The modal mass
ϵ becomes an additional unknown parameter of the problem, and must be found in the solution of
Eq. (9) with a parametric restriction. In this paper, the predictor-corrector scheme was chosen as
continuation method. The tangent method was used for the prediction step and the arc-length for
the correction step. A complete description of this continuation method is given in [7].

4 Numerical examples

Clamped-clamped �exible beams with nonuniform cross sections were chosen to exemplify the
proposed procedure for computing NNNMs of nonuniform �exible beams. In total, two con�gu-
rations of �exible beams are considered: one having the thickness and height of the cross section
decreasing linearly from the edges to the center (Beam 1), and the other increasing from the edges
to the center (Beam 2). The geometric and material properties of both beams are presented in Fig.
1. An illustration of the adopted mesh for the Beam 1 is presented in Fig. 2. It covers only half of
the beam's domain since the symmetry in the structure is consider. The equations of motion of the
beams were obtained using the co-rotational formulation. The �rst NNM was computed using the
HBM with truncation order H = 6. The Alternating Frequency-Time (AFT) was used to compute
the nonlinear part of the Fourier coe�cients of the residue. The Newton-Raphson method was
used to solve the nonlinear algebraic equations that characterize the periodic approximation. The
numerical continuation was carried out for a mechanical energy varying from 10−3 J to 103 J.

The fundamental frequency of the periodic approximations are presented in the frequency-
energy plot (FEP) in Fig. 3. For both beams, a sti�ening behavior is observed since the fun-
damental frequencies increase with the energy level. The fundamental frequency of Beam 2 is
signi�cantly lower than the fundamental frequency of Beam 1, mainly because more mass is con-
centrated at lower sti�ness points of the beam, i.e., close to the middle. This is more expressive
for low energy levels, where the ratio between the fundamental frequencies is approximately 2.
However, at the maximum energy level, the same ratio becomes approximately 1.25, which means
that values of the fundamental frequencies became relatively closer to each other.

The motion of the NNMs at two particular energy levels (10−2 J and 102 J) is further analyzed
and presented in Fig. 4 for Beam 1, and in Fig. 5 for Beam 2. The Fourier coe�cients of the
motions at the middle point and in the quarter point of the beams (represented by the blue and red
lines, respectively) are also presented. At the low energy levels, the motion of the clamped-clamped
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Figure 1: Material and geometric properties of the nonuniform �exible beams.

Figure 2: Adopted mesh for Beam 1 considering the symmetry of the structure.
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Figure 3: Frequency-energy plot of the �rst NNMs of Beam 1 and Beam 2.
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Figure 4: NNM motion of Beam 1 at low and high energies. Fourier coe�cients of the motion at
middle and one quarter of the beam.

nonuniform �exible beams is approximately equal to the linear normal modes of the underlying
linear system, where only the fundamental harmonic de�nes the motion. However, at high energy
levels, the NNM motion of Beam 1 exhibits signi�cant participation of higher harmonics when
compared to the NNM motion of Beam 2 at the same energy level. Therefore, it is possible to
conclude that the participation of the higher harmonics in the NNMs motions can be reduced by
changing the distribution of material along the beam.

5 Conclusions

Flexible beams were modeled here using the co-rotation �nite element method. Models with
geometric nonlinearities emanated from the large displacements and rotations of nonuniform cross
sections could be e�ciently computed with this method. The equations of motion were used
to construct periodic boundary value problems that determine the NNMs. The solutions were
successfully computed combining the HBM with the arc-length continuation. From the results of
the presented example, it was possible to conclude that clamped-clamped �exible beams present
a sti�ening behavior since the fundamental frequency increases with the energy level. Also, the
participation of the higher harmonics in the NNM motion could be reduced adopting a di�erent
distribution of material along the beam, which could be consider to improve the design of �exible
beams vibrating at high energy levels.
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