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Abstract.

Depending on the frequency of the mean motion of the third body, some secular resonances involving
this frequency and the frequencies of the longitude of the pericenter or longitude of the ascending
node of the satellite, can appear in this problem. In this case, averaging in the mean motion of
the Sun can not be applied, while single averaging in the mean longitude of the satellite is always
recommended since it greatly simplifies the calculations. We developed the equations to calculate
the resonant semimajor axis due to the evection resonance considering the J2 and C22 terms. With
these equations, we show some examples of the resonant semimajor axis for the planets Earth and
Mercury and of the dwarf planet Haumea. Using the single-averaged model (keeping only J2 and
third body perturbation), we draw some simple curves (Contour Plots) to identify resonant orbits
due to evection resonance.
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1 Introduction
In addition to classical mean motion resonance (MMR), there exists another very important

group of resonances which involves angles whose periods are much longer when compared to single
fast orbital periods like those seen in MMR. These resonances usually involve the combination of
the longitude of the pericenters or longitude of the nodes and sometimes the mean longitude of a
distant (but very massive) third body. We call secular resonances as they are connected to very
long periods when compared do MMR. Kozai and evection resonance are some typical cases and
they play important role not only in our solar system but also in the dynamics of the extrasolar
celestial bodies. Here, in this work, we analyze the effect of the evection resonance. Analytical
expressions are developed in this case. Analysis of the orbital motion of an artificial satellite
around planets or moons are presented taking into account the non sphericity of the primaries and
the perturbations coming from a third body in an elliptical and inclined orbit. Depending on the
frequency of the mean motion of the third body, some secular resonances involving this frequency
and the frequencies of the longitude of the pericenter or longitude of the ascending node of the
satellite, can appear in this problem. In this case, averaging in the mean motion of the Sun can
not be applied, while single averaging in the mean longitude of the satellite is always recommended
since it greatly simplifies the calculations. However, some caution is necessary in some cases. Even
in our solar system we have some bodies where the C22 coefficient is almost of the same order of
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the classical J2 (Mercury, Moon, Haumea, etc). We developed a new equation to calculate the
resonant semimajor axis when the C22 term is taken into account.

The classical problem of the critical inclination certainly is one of the oldest problems of secular
resonance in the study of dynamics of artificial satellite. In [7] the author discusses the importance
of the small divisors that arise in the vicinity of the critical inclination. The secular resonance effect
was used to show that the growth in the eccentricity, as observed in spatial debris located in the
MEO region at inclination approximately equal to 56 degrees, can be explained as a natural effect of
the secular resonance 2ẇ+Ω̇ = 0. See also similar investigation about this kind of resonance in [9].
In this work, the authors emphasize the importance of the inclination of the Moon, and the also the
fact that this resonance does not depend on the semimajor axis of the satellite. Some optimal initial
conditions for the pair (ω,Ω) that provide maximum or minimum increase of the eccentricity are
studied. More recently, in [4] is shown an interesting up date discussion of this important resonance
which involves the debris problems. The authors show that the growth of eccentricity caused by
resonance 2ẇ+Ω̇ = 0 can be used as an effective strategy for moving space debris into non-operative
or graveyard orbits. An approach to investigate the probability of capture in evection resonance
as a function of the tidal evolution rate and initial eccentricity is presented in [12]. Analytical
expressions are developed for analysis of the resonant system, and the escape mechanism of the
evection resonance is explored. In [6], the effect of the evection resonance is strongly emphasized in
the study of the stability of natural satellites of Saturn. In [11], the effects of the evection resonance
are shown to be crucial in the survival of the satellites of some exoplanets when migrating inward
to the star. By evection resonance we mean a 1:1 commensurability between the mean motion of
exoplanet (primary) around a star (third body) and the longitude of the pericenter of the satellite
around the exoplanet. We developed the equations to calculate the resonant semimajor axis due
to the evection resonance considering the J2 term (for the classic term due to J2 see [14, 15]) and
a equation considering the C22 term. With these equations, applications are made to calculate
the resonant semimajor axis of the planets Earth and Mercury and of the dwarf planet Haumea.
Considering the resonant disturbing potential, obtained from the single-averaged model, due to
evection resonance, diagrams are presented using Contour Plots to identify resonant orbits.

2 Evection resonance
Considering a low altitude artificial satellite, and assuming that J2 is the dominant term, we

first restrict the non-sphericity of the primary to only the portion due to the < RJ2 > term as
given in equation (12) of the reference [3]. From Lagrange’s planetary equations we have:

dg
dt = 3

4

nJ2 R2(5 cos2(i)−1)
(e2−1)2a2

(1)

dh
dt = − 3

2
nJ2 R2 cos(i)

(e2−1)2a2 (2)

The orbital parameters of the spacecraft are (a, e, i, g, h, n) semimajor axis, eccentricity, inclination,
argument of the pericenter, longitude of the node and mean motion, respectively. In the evection
resonance, the 1:1 commensurability between ϖ and λ⊙, where λ⊙ is the mean longitude of the
third body (Sun) and ϖ = g + h = longitude of the pericenter of the satellite, is characterized
when we have:

2ġ + 2ḣ− 2n⊙ = 0 (3)

where n⊙ is the mean motion of the third body as seen from the primary that hosts the satellite.
Here, in our case n⊙ is constant, since the motion of the third body is assumed to be known.
Replacing equations (1) and (2) in equation (3) and solving for a, the solution is given by
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ares
7/2 = 3

4

√
µJ2Rp

2(5 (cos(i))2−2 cos(i)−1)
(1−e2)2n⊙

(4)

It is known that some celestial bodies have the C22 term (due to equatorial ellipticity) almost
of the same order of magnitude as J2. Thus, if we consider, in addition to < RJ2 >, the < RC22 >
term given by equation (14) of the reference [3] and to replace in Lagrange’s planetary equations,
we get

dg
dt = − 3

4

µ (10 cos(2h)(cos(i))2C22 R2−5 (cos(i))2J2 R2−6C22 R2 cos(2h)+J2 R2)
na5(e2−1)2

(5)

dh
dt = 3

2

cos(i)(2C22 R2 cos(2h)−J2 R2)µ
na5(e2−1)2

(6)

Replacing equations (5) and (6) in equation (3) and solving for a, the solution is given by

ares
7/2 = 3

2

√
µR2((−5 (cos(i))2+2 cos(i)+3)C22 cos(2h)+1/2 (5 (cos(i))2−2 cos(i)−1)J2)

(1−e2)2n⊙
(7)

Now, just to see the main feature of the phase space of the evection resonance, we consider
some crude approximations: we take only the secular terms and the resonant cosine, that is, the
term factored by cos(2g + 2h − 2λ⊙), obtained from the equation of the disturbing potential due
to the third body (Sun) in an elliptical and inclined orbit:

R2res =
27µ′n⊙

2a2

16 ((A2 +B2 + C2 +D2 + 2E2 − 2/3)(e⊙
2 + 2/3)(e2 + 2/3)−

25
9 C2(e⊙

2 − 2/5)e2 cos(2g + 2h− 2λ⊙))
(8)

Since λ⊙ = n⊙t + θ⊙, then this potential depends explicitly on time. In order to continue, a
convenient change to Delaunay canonical elements is very convenient, since we can reduce this
problem to a one degree of freedom conservative Hamiltonian problem. This can be easily done in
the following way ([15], [1], [8]):

R2res =
27µ′n⊙

2a2

16 ((A2 +B2 + C2 +D2 + 2E2 − 2/3)(e⊙
2 + 2/3)(e2 + 2/3)−

25
9 C2(e⊙

2 − 2/5)e2 cos(2ϖ − 2λ⊙))− n⊙P⊙

(9)

For the moment, we have R2sec = R2sec(a, e, i, g, h, λ⊙). Writing R2sec in terms of the classical
Delaunay variables (L,G,H, l, g, h), (Brouwer & Clemence,[1]) we have: R2sec(L,G,H,−−,g,h,λ⊙). As
l = mean anomaly has been eliminated, L = is constant, so that the effective hamiltonian of this
problem is: H2sec = R2sec(G,H,g,h,λ⊙). In order to work with conservative Hamiltonian, we extend
the phase space, so that the Hamiltonian in the extended space now writes:

H2sec∗ = H2sec˘n⊙ ∗ P⊙, where P⊙ is the conjugated momentum of λ⊙, so that we have
(G,H,P⊙, g, h, λ⊙) as the new set canonical variables. Now, instead of classical Delaunay, we prefer
to move to slow Delaunay variables, which are also canonical variables (Brouwer & Clemence,[1]),
that is: G− L → ϖ; H −G → h; P⊙ →;λ⊙. Now we perform the last trivial transformation:

(G− L,H −G,P⊙, ϖ, h, λ⊙) → (P1, P2, P3, θ1, θ2, θ3), where we take
θ1 = λ⊙; θ2 = h; θ3 = ϖ − λ⊙. Now, taking into account the condition of Jacobi-Poincaré

(G−L)dϖ+(H−G)dh+P⊙dλ⊙ = P1dθ1+P2dθ2+P3dθ3 = P1dλ⊙+P2dh+P3d(ϖ−λ⊙). Thus,
we get, G− L = P3, H −G = P2, P⊙ = P1 − P3, H = P2 +G, H = P2 + P3 + L. Therefore, the
R2res can be written in the form

R2res =
27µ′n⊙

2a2

16 ((A2 +B2 + C2 +D2 + 2E2 − 2/3)(e⊙
2 + 2/3)(e2 + 2/3)−

25
9 C2(e⊙

2 − 2/5)e2 cos(2θ3))− n⊙(P1 − P3)
(10)
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Since P1 and P2 are constants, the term additive −n⊙P1 is neglected. So our final Hamiltonian in
the terms of (Pi,Θi) variables, is a one degree of freedom, conservative Hamiltonian.

R2res =
27µ′n⊙

2a2

16 ((A2 +B2 + C2 +D2 + 2E2 − 2/3)(e⊙
2 + 2/3)(e2 + 2/3)−

25
9 C2(e⊙

2 − 2/5)e2 cos(2θ3)) + n⊙P3

(11)

Rewriting P3 as a function of the orbital elements and adding the perturbation due to the oblateness
of the planet (J2), we obtain the resonant disturbing potential (evection resonance) given by
equation (12), where we included the dominant part of the oblateness:

R2res = − 1
4
J2Rp

2n2(−2+3(sin(i))2)

(−e2+1)3/2
+ 27µ′n⊙

2a2

16 ((A2 +B2 + C2 +D2+

2E2 − 2/3)(e⊙
2 + 2/3)(e2 + 2/3)− 25

9 C2(e⊙
2 − 2/5)e2 cos(2θ3))+

n⊙
√
µa(

√
1− e2 − 1)

(12)

we emphasize that this Hamiltonian is only a very crude model, designed to obtain a first idea of
the phase space of the evection resonance, for very close satellite. Even an inclusion of a single C22

term, modifies drastically the present model since the problem becomes, at least a two degree of
freedom system, usually non integrable. This more general Hamiltonian can be studied in a next
work.

3 Calculating the resonant semimajor axis

In this section, we calculate the resonant semimajor axis of some celestial bodies of the solar
system using equations (4) and (7). In some cases, we find the resonant semimajor axis due to
the evection resonance smaller than the reference radius of the central body. In this case, we say
that there is no resonant semimajor axis due to evection resonance. The model considering the
C22 term to calculate the resonant semimajor axis due to evection resonance, can be considered
for bodies that are in a spin-orbit resonance. These bodies have significant equatorial ellipticity
(C22) (for example, Moon, Haumea and some satellites of the solar system), because it is forced
by the gravitational tidal torque of the disturbing body. Hence the classic model is used, which
takes into account only the J2 term. Using equation (12) we obtain the level curves for the case
where we find the resonant semimajor axis greater than the reference radius of the central body.

I) Celestial body of the solar system: Earth
Using equation (4) we show the variation of the semimajor axis resonant of the Earth with

respect to inclination, as we can see in Figure 1(a). To compare with [8] take the inclination of
i = 1◦ and e = 0.005 to calculate the resonant semimajor axis. We found ares = 12, 350.58474 km,
which is in agreement with [8]. Note that when i = 180◦ we have ares = 16, 907.65931 km. Now,
using equation (12) we can construct the level curve of the eccentricity versus the resonant angle,
which is also in agreement with [8] as we can see in Figure 1(b) of this work and Figure (2.2) of
[8]. Note that in Figure 1(b) appear the regions that librates around the equilibrium point.

II) Celestial body of the solar system: Mercury
In the case of Mercury, there is no resonant semimajor axis (using equation (4)), since the

value found is smaller than the reference radius of the planet, as shown in Figure 2(a). This is in
agreement with [5], where the authors comment that all values of eccentricity of the orbits affected
by the resonance lead to pericenters that are inside the physical radius of the planet. As in the
case of Mercury the C22 term is of the same order of magnitude J2 (see [13]), then we developed
an equation for the resonant semimajor axis taking into account the J2 and C22 terms. Equation
(7) represents this model. In this equation we stall have two additional variables, inclination
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(a) (b)

Figura 1: Initial Condition: e = 0.005. celestial body considered: Earth. (a) Resonant semimajor
axis (evection) versus inclination, using equation (4). (b) Level curves of the equation (12) showing
the variation of the eccentricity as a function of the resonant angle. Initial Condition: ares =
12350.58474 km, i = 1◦.

and longitude of the ascending node. Again there is no resonant semimajor axis for the case of
Mercury, even considering the C22 term, as shown in Figure 2(a). That is, we verified that the
evection resonance does not contribute to the dynamics of an artificial satellite around Mercury.
We also present Figure 2(b), eccentricity versus semimajor axis resonant, note that the possible
values of the semimajor axis are valid for eccentricities above 0.8, which is impractical for a satellite
near Mercury.

(a) (b)

Figura 2: Initial Condition: e = 0.01. Celestial body considered: Mercury. (a) Resonant semimajor
axis (evection) versus inclination. (b) Resonant semimajor axis (evection) versus eccentricity, using
equation (4).
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III) Celestial body of the solar system: Dwarf planet Haumea
It is known that Haumea is a triaxial ellipsoid with principal semi-axes A = 1161 km > B = 852

km > C = 513 km (see [10]). Haumea does not have the well-defined spherical harmonic values.
Here, we calculate the values of J2 and C22 using the formulas presented in [10]. But, in [2], a review
of the calculation of the spherical harmonics (J2, J4 and C22) of Haumea is presented considering
different equations found in the literature and the result is compared with other authors. We find
J2 = 0.76 and C22 = 0.61, this value is in accordance with the Table 1 given in reference [10].
Figure 3(a) shows the behavior of the resonant semimajor axis for several inclination values. Using
Equation (4), fixing i = 1◦ and e = 0.01, we find a = 10, 349.50329 km. Now, fixing i = 180◦ and
e = 0.01, we find a = 14, 168.22598 km. In the case of Haumea, the C22 term must also be taken
into account because of its order of magnitude when compared to the J2 term (see, for example,
[2]). Thus, we also use equation (7), to consider the C22 term in the dynamics. According to Figure
3(a), we notice that the minimum and maximum points have been changed to the effect of the C22

term. The inclination values have also been changed. Considering equation (12), we constructed
the contour of the eccentricity versus the resonant angle. Note that Figure 3(b) shows the regions
that librates around the equilibrium point. This figure shows that there is symmetry for resonant
angle around 90 and 270 degrees. Other orbits circulate, in this case the eccentricity is excited as
shown in Figure 3(b).

(a) (b)

Figura 3: Initial Condition: e = 0.01. celestial body considered: Haumea. (a) Resonant semimajor
axis (evection) versus inclination. (b) Level curves of the equation (12). Initial Condition: ares =
10349.50329 km, i = 1◦.

4 Conclusions
In this case when the frequencies of longitude of pericenter of the satellite and the mean motion

of the sun are in ratio 1:1, the angle ϖ− λ⊙ may librate. In principle, the study of this resonance
has been done following standard procedure. The main effect is the increase of the eccentricity
of the satellite, which can cause the escape of the satellite. Recently, due to the increase of
mission exploring asteroids, dwarf planets, satellites of giant planets, etc, it appeared the interest
in studying orbiters of these triaxial bodies. This time, contrary to the classical case, the resonant
semimajor axis (acrit) is not a unique isolated value. In principle, it is a curve in the plane
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(a, h), where h is the longitude of the node of the satellite. Here we just presented some crude
aproximations showing the equation that defines acrit for some especial celestial bodies. We intend
to study evection resonance with more details in the future.
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