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Abstract. Dengue fever is an endemic disease, present in tropical and subtropical regions, trans-
mitted by the Aedes Aegypti mosquito vector. It has recently appeared in non-tropical regions
with dry weather. This represents a setback for advanced temperature-based reference models,
since mosquitos reproductive cycle does not necessarily match with the outbreaks. This situation
indicates that other variables are also involved in epidemic outbreaks. In this work we propose to
include a component that capture this process, whether entomological, environmental or related to
population mobility, and include it to the reference model by adding a Gaussian function to the
formulation of humans (βh) and vectors (βv) transmission rate. The parameters to be adjusted for
this function were evaluated by a probabilistic model selection experiment. The parameters for this
function are u, σ and k. The results indicate that, our model outperforms the reference model, and
that additional information about outbreaks can be obtained from the new parameters. .
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1 Introduction
Dengue fever is a viral disease transmitted mainly by the Aedes Aegypti mosquito acting as a

vector. This disease causes hospitalizations and even death. Its endemic characteristic makes it a
public health problem. Dengue fever is now endemic in Africa, America, Asia and the Western Pa-
cific. In South America, there has been a dramatic increase in cases in countries such as Colombia,
Ecuador, Paraguay, Peru6, Venezuela and Brazil [4].

Statistical and mathematical models have been proposed in order to capture the characteristics
of the outbreaks [2, 3]. Compartmental models e.g. SIR, SEIR, SIS, are the classic modeling
strategy and allows characterize an outbreak by ranking the population into different compart-
ments. Several correlations [5] have been found which are use to predict the characteristics of the
outbreaks and thus explain this phenomenon. Climate-related variables (temperature, humidity,
rainfall) have been studied with promising results in Asian countries [6]. However, these models
will fail to fit the data (when the consider only temperature), because they do not have enough
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flexibility to consider other variables involved in the transmission process such as overwintering of
mosquito eggs, population mobility and tourism. Furthermore, with the expansion of the epidemic
to desert regions, temperature data do not necessarily coincide with the reproductive cycles of the
vector. Therefore other factor that can trigger the outbreak such as the arrival of infected vectors
and/or people [7]. This work propose the use of well characterized Gaussian function to capture
the missing effect.

2 Methodology
In this work, the model known as SIR-SI7 has been used. This model has a transmission rate

that is temperature dependent, similarly to Lee et al. [6]. The region of study, Lima, Peru is
part of the Sechura desert, therefore to apply the same model we introduce a Gaussian function
to capture the outbreak dynamics. Then the free parameters are estimated using a log-normal
likelihood function to optimize the model predictions using a differential evolution algorithm [9].
With all possible combinations of the free parameters, a model selection experiment was performed
to define which combination gives better predictions. Finally, the best fitting curves of the reference
model against the new model are presented.

2.1 Dataset
The weekly cases of Dengue organized in 43 districts of the province of Lima were obtained

from the National Center for Epidemiology, Disease Prevention and Control (CDC Peru). For this
work, we add all the cases of the districts weekly obtaining the total outbreaks of Lima per year
for the years 2017, 2019, and 2020.

2.2 Mathematical Models
Let Sh ∈ N, Ih ∈ N and Rh ∈ N be the fraction of Susceptible, Infected and Recovered humans

(host), respectively. Sv ∈ N and Iv ∈ N are the fraction of Susceptible and Infected mosquitoes
(vectors). Then the SIR-SI model is defined by the following set ordinary differential equations
(ODE):

dSh

dt
= −βvShIv (1)

dIh
dt

= βvShIv − γIh (2)

dRh

dt
= γIh (3)

dSv

dt
= −βhSvIh − µSv (4)

dIv
dt

= βhSvIh − µIv, (5)

where βv ∈ R is the transmission rate from vector to host and βh ∈ R from host to vector; t ∈ R
is the time, γ ∈ R is the recovery rate for hosts, µ ∈ R is the death rate for vectors. This set of
equations are solved as initial value problem by setting:

Sh0
= 1− Ih0

Nh
, Ih0

=
1

Nh
, Rh0

= 0, Sv0 = 1− Iv0

Nv
, Iv0 =

1

Nv
, (6)

7SIR-SI: Susceptible-Infective-Recovered for human populations; Susceptible-Infective for vector populations
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where Nh and Nv are human and vector populations respectively and representing the values at
time t = 0. Furthermore, according to the reference model Nv = 2Nh. In the literature the most
common free parameters are Nh, βh, βv, γ and µ.

Reference Model: Lee et al. (2018) assume that µ, βh and βv are defined by a functions of
the temperature T (t), i.e. b(T (t)) ∈ R, bh(T (t)) ∈ R and bv(T (t)) ∈ R and µv(T (t)) ∈ R (see Figure
1). Therefore the transmission rates are defined as follows:

βh(t) = x1 b(T (t)) bh(T (t)) (7)
βv(t) = x2 b(T (t)) bv(T (t)), (8)

where the two main free constant parameters are x1 = {x ∈ R, 0 < x < 1} and x2 = {x ∈ R, 0 <
x < 1}.

Figure 1: (a), (b), (c), and (d) show temperature-based functions for µ, b, bh, and bm, respectively.
Adapted from [6].

Note that to fit this model Nh, x1, and x2 are let free.
Model with βex : Since the outbreaks peak does not necessary match with the week the

highest transmission rate b(T (t)), bh(T (t)) and bv(T (t)). This work replaces the constants x1 and x2

by a time dependent variable βex(t) ∈ R using a Gaussian function. Thus, the computation of βh(t)

and βv(t) are redefined as:

βh(t) = βex(t) b(T (t)) bh(T (t)) (9)
βv(t) = βex(t) b(T (t)) bv(T (t)), (10)
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where βex is a time dependent Gaussian function:

βex := ke
−
(t− u)2

2σ2 , (11)

where k ∈ R is a constant, u ∈ R is the mean (the week with which the transmission is triggered),
and σ2 ∈ R the variance of the function. For the fit we use likelihood as a cost function for
optimization. Note that this model can have more free parameters which are Nh, u, σ and k.

One common assumption to fit the model to a given set of weekly reported cases (an outbreak)
is that the observational errors follow a normal distribution (likelihood) i.e. least square error.
Thus the normal distribution should return the maximum value when the model prediction is
perfect i.e. optimal (the maximum likelihood estimation, MLE). The optimal parameters can be
estimated by minimizing the sum of the negative log-likelihood (SNLL) as follows:

SNLL := −
n∑

i=1

log

 1√
2π

e
−
(vi − ui)

2

2σ2

 , (12)

where σ2 is the mean of cases, ui is the prediction for the time t, n is the number of observations,
and vi represent the observed cases at time t. Note that to obtain the model predictions the ODE
should be approximated numerically for each step of the optimization algorithm.

2.3 Model Selection
This subsection presents results of the model selection experiment. This experiments seeks to

determine which parameters of the Gaussian function should be left free to have an reasonable
optimal solution. Four experiments were set up,

1. Model 1: let free u and σ = 1 , k = 1,

2. Model 2: let free u, σ and k = 1,

3. Model 3: let free u, k and σ = 1,

4. Model 4: let free u , σ and k.

Then given a set of observations, each best fit solutions is compared to select which model explains
better the data. The comparison was made considering probabilistic statistical measures that
attempt to quantify the models performance:

1. The optimal value of the SNLL is called Maximum Likelihood Estimation (MLE). However,
this function does not penalize solutions where the model complexity is increased i.e. with
more free parameters in the model.

2. Akaike Information Criteria (AIC) includes a penalization for the model complexity as follow:

AIC := 2q − 2 ln(MLE) (13)

where q is the number of free parameters [1]. Although, it does not take account of the
uncertainty in the model parameters.

3. Bayesian Information Criteria (BIC), which is defined as:

BIC := q ln(n)− 2 ln(MLE), (14)

where q is the number of model parameters and n the number of observations.

The AIC, BIC and MLE were used to assess the quality of the best fit of each model [8]. The
lower the values, the better the fit.
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3 Numerical Results

This section presents the numerical experiments results. Table 1 presents the model selection
evaluation. In the first column, we have different models to select, then the evaluation metrics and
in the following columns, we have the metric values for different years. Lower values are the best
ones. In all cases, Model 4 gives better results for AIC, BIC, and MLE. In some cases, it is up to
twice as good as other methods despite being more complex in terms of the number of parameters.

Table 1: Evaluation of the fit of the models using AIC, BIC and MLE.
Model Metric 2017 2019 2020

Model 1 AIC 1463.0973 2690.7484 1438.6672
BIC 1463.3999 2691.0511 1438.9698
MLE 730.5486 1344.3742 718.3336

Model 2 AIC 1438.3085 2248.1844 1439.1038
BIC 1438.9136 2248.7896 1439.7089
MLE 717.1542 1122.0922 717.5519

Model 3 AIC 1466.7228 1952.3625 1424.4774
BIC 1467.3279 1952.9676 1425.0826
MLE 731.3614 974.1812 710.2387

Model 4 AIC 286.9677 1201.5911 263.0954
BIC 287.8754 1202.4988 264.0032
MLE 140.4838 597.7955 128.5477

As shown in Figure 2, the adjust of the infected curve to the observed data is substantially
improved by incorporating βex, fitting according to Model 4. This model allows to adjust the three
parameters of the Gaussian function that determines the parameter βex. These parameters (u, σ
and k) are the ones that define the shape of βex which are then multiplied by b and bh,v introducing
the necessary process to correctly model the outbreak. The values of βh in the benchmark model
and βh with βex included, in addition to βex, can be seen in Figure 3.

Figure 2: Data from the SIR-SI model with the exogenous variable and the climatic conditions adjusted
for year 2017. Adjustment without βex (in green) and adjustment with βex according to Model 4 (in red).
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Figure 3: Plot of the βex component, βh based only on temperature and with the added βex component
for the year 2017.

Models 2 and 3 set a parameter at 1, k and σ, respectively, while Model 1 only adjusts u.
These three models have similar performance, which tells us that setting a parameter prevents our
proposed component βex from fitting correctly.

Although Model 4 is selected as the best in terms of the metrics chosen, Table 2 shows that
there is a consistency between the values taken by the variables. This Table shows the values
taken by the adjusted parameters for each model and allows us to analyze and interpret them
in the context of the epidemiological outbreak. Since βh,v represents the transmission rate, the
parameters u, σ and k of βex have a direct bearing on it. The mean value u indicates the week when
the effective transmission rate is higher, the variance σ2 is relate to the duration of the outbreak
and k represents the importance of exogenous factor against the temperature in the adjustment.
Therefore the model can extract new information from the data.

Table 2: Values obtained in the adjusted parameters in each experiment.
Model Parameter 2017 2019 2020

Model 1 u 5.4881 6.9874 5.2181
Model 2 u 6.1528 7.3931 5.1911

σ 1.0719 0.7461 0.9843
Model 3 u 5.4863 6.8787 5.1141

k 1.0033 0.7371 0.9744
Model 4 u 2.3703 7.9240 0.0507

σ 7.8431 4.7796 5.7511
k 0.3833 0.2249 0.4785

These parameters can be used to characterize the outbreaks, in addition to the information
already obtained with the SIR-SI model and the information from the climate-dependent variables.
Therefore the model can provide new information from the data.
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4 Conclusions
The experiments indicate that Gaussian function is effective to overcome the limitation of the

reference model [6]. The model selection experiment indicates that is better to have the three
parameters of the Gaussian function as free parameters.

The amount of information obtained from the phenomenon is even richer than that the reference
model. The parameters are capable to extracting the duration of the epidemic (determined by σ2),
the peak of the transmission rate (determined by u) and the importance of the exogenous or hidden
factors in the model (determined by k).

The model can capture the epidemic dynamic process. However, the question that arises is the
understanding of the process itself (in terms of physical, biological, and entomological meanings).
An entomological or transport-based explanation, human mobility, socio-cultural behavior such as
accumulating water in a reservoir are viable options to be explored in future works.
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