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Abstract. The article establishes a result of Lyapunov instability to differential equations with
piecewise constant argument of generalized type (EPCAG), through the qualitative study of solu-
tions for EPCAG via functions of continuous time. Using the result established in the article, we
study the instability of a logistic equation with piecewise constant argument of generalized type.
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1 Introduction and Preliminary

The present article studies differential equations with piecewise constant argument of general-
ized type (EPCAGQG). The stability study for such differential equations can be found, for example,
in [2-5], [7] and [10, 11]. Tt can be seen that instability is treated in [5] and [10]. In [5] the instabil-
ity is treated for a logistic equation EPCAG by reducing the equation into a difference equation.
On the other hand, in [10] the instability is treated for a scalar differential-difference equation.

Suppose N denotes the set of natural numbers and RT denotes the set of nonnegative real
numbers, that is, N = {0,1,2,...} and RT = [0,00). In addition, we will denote the Euclidean
norm in R™, n € N, by ||.||. Consider a sequence {6;};cn of real numbers such that 0 = 6y < 6 <
o<l <--- and 0; — oo as i — oo.

We study here the following class of nonlinear differential equations with piecewise constant
arguments

() = f(t,2(t), 2(B(t))) (1)

where z(t) € R", t € R" and (t) = 6, if t € [0;,0;11), i € N. Here @(t) denotes the derivative of
function z : RT™ — R™ at t. Eq. (1) was considered in [3] for the investigation of stability with the
second Lyapunov method. To the best of our knowledge, the literature lacks instability results via
functions of continuous time.

Based on Lyapunov’s first instability theorem (see [12]), the present work establishes an insta-
bility result for EPCAG. Then we use the result established here to study the instability of a class
of EPCAG that determines the logistic equation with piecewise constant argument of generalized
type (see [3]).

A continuous function z(-) is a solution to Eq. (1) on R* if it satisfies the Eq. (1) on the
intervals [0;,0,11), i € N, and the derivative %(t) exists everywhere with the possible exception of
the points 6;, i € N, where one-sided derivatives exist. Let S(xo) denote the set of solutions z(+) to
Eq. (1) on [0,00) with 2(0) = zo. If € S(z¢), we will also use the notation (¢, 0, zo) to denote
x(t). The existence of solutions to EPCAG can be found in [1| and [3].
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As an example of Eq. (1), below we determine the solutions y(-) of the following equation
9(6) = =by(BO) (y(1) + 3), (2)

where a and b are nonzero constants of the same sign. If y(0) = yo and yo + § > 0, suppose that
y(t) + ¢ > 0for t € (0,c1), with 0 < ¢; < 61. Using separation of variables (see [9]),

a ay _
y(t) = =5 + (o + 3)e™"",

and we may conclude that ¢; = 6;. Since y € S(yo) is continuous, y(61) = —% + (yo + §)e %% =
y1- W y(t) + ¢ >0 fort € (01, co), with 61 < co < 6, we have

a a, _ —
y(t) = —g + (y1 + g)e bya (¢ 01),

and then c; = 03. By mathematical induction,

a AN by (1—0;
y(t) = —g—l- (yi—l-g)e by (t 9’),

for t € [0;,0;11), i € N, with y; = y(6;). Similarly, if yo + ¢ < 0, then S(yo) = {y}, where

y(t) = f% + (vi + %)e*byi@*"i),

for t € [0;,0;11), i € N, with y; = y(6;). Now suppose that yo = —% and t € [0, 01). Then
. a?

and from variation of constants formula (see [6]) we may conclude that

t 2
y(t) = e"yo +/ elt=a g,
O b

that is, y(t) = —§ for t € [0y, 01). Since y € S(—7%) is continuous, y(01) = y1 = —3. Hence

o) = ay(t) +
for t € [01,02). From variation of constants formula,
t 2
y(t) = el =y, +/ et ds,

01

and then y(t) = —% for t € [01,602). By mathematical induction y(t) = —% for each t € [0;,0;41),
i € N. We conclude that S(—$) = {y}, where y(t) = —¢ for t € [0;,0,41), 1 € N.

We note that the equilibria of Eq. (2) are given by y = 0 and y = —%.

Throughout the article, we assume the following hypothesis.

(H) For each x € R™, the function (t,y) — f(¢,x,y) is continuous.

Thus, if z € S(zp) then @(-) is continuous as a function defined in [0;,0;11), i € N.

DOI: 10.5540/03.2022.009.01.0264 010264-2 © 2022 SBMAC


http://dx.doi.org/10.5540/03.2022.009.01.0264

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 9, n. 1, 2022.

2 Absolutely Continuous Functions

In this section are considered concepts and results that will be used in the development of the
main result (Theorem 3.1). Below we have the definition of an absolutely continuous function (see
for instance [13] and [15]).

Definition 2.1. A function x : [a,b] = R™ is called absolutely continuous if for any e > 0, there
exists 0 > 0 such that, for any countable collection of disjoint subintervals [a, b;] of [a,b] satisfying

Z(bk — ak) < 5,

we have

Z |z (by) — xz(ar)| < e.

We can also define an absolutely continuous function on a given interval I C R. We have
the following result concerning absolutely continuous functions. Here we consider the notion of
Lebesgue integral.

Theorem 2.1 ([13]). In order that the function F(x) be an indefinite integral, it is necessary and
sufficient that it be absolutely continuous.

As we can see in [15], an absolutely continuous function z : [a,b] — R"™ is differentiable almost
everywhere, and its derivative &(-) is a Lebesgue integrable function. We also note the Newton-
Leibniz formula is true; that is,

x(t2) —x(t1) = / ’ x(s)ds

t1

for all ¢1,t9 € [a, b], t1 < to.
Let V : RT x R™ — R be a locally Lipschitz continuous function and let € S(x(). Then the
function w : RT — R defined by w(t) = V(¢,z(t)) is absolutely continuous. Indeed, since

z(t) = x(0;) +/9 z(s)ds

for t € [0;,0;41), ¢ € N, from Theorem 2.1 the function x is absolutely continuous on [6;,6;11),
i € N. Since z is a function continuous on R, we conclude that z is absolutely continuous on
[0:,0i11], i € N. Then w is absolutely continuous on [0;,6;11], i € N, because V is locally Lipschitz
continuous. Thus, w is absolutely continuous.

3 Lyapunov Instability

From Lyapunov’s first instability theorem and its proof (as [12, Theorem 9.16]), in Theorem
3.1 we establish an instability result to system given by Eq. (1). Theorem 3.1 is formulated by
using functions of continuous time V', and its proof is similar to [12, Theorem 9.16]. The functions
of continuous time V' in Theorem 3.1 are analogous to Lyapunov functions for systems of ordinary
differential equations (see for instance [8] and [16]).

Concepts of Lyapunov stability for the system given by Eq. (1) are formulated in a similar way
to ordinary differential equations (see [12] and [14]). Below, we consider concepts of stability (in
the sense of Lyapunov) to solution x = 0 of Eq. (1) with initial condition x(0) = z¢. For this, we
can assume that f(¢,0,0) =0 for all ¢t € R*.
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Definition 3.1. The equilibrium x = 0 is stable if for any € > 0 there exists § = d(¢) > 0, such
that if ||zo|| < 0, then ||z(t,0,z0)|| < € for all t > 0.

Definition 3.2. The equilibrium x = 0 of Eq. (1) is unstable if it is not stable.

Definition 3.3. We say that a continuous function v : [0,71] — RT (respectively, 1 : [0,00) — R*)
belongs to class KK (¢ € K), if ¥(0) = 0 and if ¢ is strictly increasing on [0,71] (respectively, on

[0,00)).
Below, B(h) denotes the open ball of radius h centered at origin,
B(h) ={x e R": ||z|| < h}.

Theorem 3.1. Let V : RT x R™ — R be a locally Lipschitz continuous function. Suppose that in
every neighborhood of the origin there are points x such that V(0,z) > 0. Also suppose that there
exist functions 1,9 € K satisfying the following conditions:

(i) for some h >0, |V (t,z)| < ¢1(||x]) for all (t,z) € RT x B(h);
) %V(t,qb(t)) > a(|lp@)|]) fort € (6i,0:41), i €N, and for all € S(xg) with ||¢p(t)]] < h, for
each t € RT.
Then the equilibrium = = 0 of Eq. (1) is unstable.

Proof. Take € > 0 such that ¢ < h. Consider a sequence of points {Z,, } men satisfying 0 < ||z,,]| <
g, V(0,2,,) > 0 and
lim z,, =0.
m—00
Let ¢, € S(xy,) and wy, : RT — R, with w,(t) = V (¢, ¢ (t)). Since w,, is absolutely continuous,
b d
m(t) — wn(0) = — W, (s)d
wn () = w0,(0) = [ T (5)ds
for all t € R™. Then ||¢y,(tm)|| = € for some ¢, € RT. For otherwise,

U1llom @) = V(E, om(t)) = wm(t)

:wm(0)+/0 %wm(s)ds
w0+ [ SV (s0m(5)
zwm(0)+/0 Pa(lm(3)])
Zwm(o)

for all t € R*. Hence
[fm (D)l > 1 (wm (0)) = am >0
for all t € R*. Thus,

01(8) > Br([6m (D) > win®)
> w0 /wz () 1)d

> wn(0) + /O V() ds

= wm(o) + th(am)

for all t € R*. Taking ¢ — co we get a contradiction. So, the equilibrium x = 0 is unstable. 0
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As an example, for the use of Theorem 3.1, we consider a class of EPCAG determined by a
logistic equation given in [5]. So, consider the logistic equation

i(t) = (a — bx(B(t)))x(t), (3)

where a and b are nonzero constants of the same sign, 8(t) = 6; if t € [0;,0;41), i € N. If a > 0,
using Theorem 3.1 we can conclude that the equilibrium = = 0 is unstable. Let A > 0 be such that
hb < a. Let V(t,x) = 2? and ¢ € S(zg). If ||¢(t)|| < h for all t € RT, we have

SV 6(0)) = 26(0) ot

dt )
=2(a —bp(B(1))) (6(t))*
> 2(a — bh)(¢(t))”
= Ya([[o(t)]])

for t € (6;,0;11), i € N, where 95(u) = 2(a — bh)u®. From Theorem 3.1 the equilibrium z = 0 of
Eq. (3) is unstable.

Using the transformation y = 2 — ¢, Eq. (3) becomes Eq. (2). The qualitative behavior of the
equilibrium = = ¢ (of Eq. (3)) is equivalent to that of the equilibrium y = 0 (of Eq. (2)). Finding
a function V as in Theorem 3.1 may not be an easy task. Similar to the search for a Lyapunov
function for systems of ordinary differential equations (see [8]).

4 Final Considerations

The article establishes a result on Lyapunov instability for EPCAG from Lyapunov’s second
method for ordinary differential equations. The result stablished here is an analogy of Lyapunov’s
first instability theorem. As future work, there is the possibility of further analogies between
EPCAG and instability results for ordinary differential equations, such as Lyapunov’s second in-
stability theorem and Chetaev’s instability theorem.
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