
Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Preprint

Instability of Di�erential Equations with Piecewise

Constant Argument of Generalized Type

Iguer Luis Domini dos Santos1

Departamento de Matemática/UNESP, Ilha Solteira, SP

Abstract. The article establishes a result of Lyapunov instability to di�erential equations with
piecewise constant argument of generalized type (EPCAG), through the qualitative study of solu-
tions for EPCAG via functions of continuous time. Using the result established in the article, we
study the instability of a logistic equation with piecewise constant argument of generalized type.
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1 Introduction and Preliminary

The present article studies di�erential equations with piecewise constant argument of general-
ized type (EPCAG). The stability study for such di�erential equations can be found, for example,
in [2�5], [7] and [10, 11]. It can be seen that instability is treated in [5] and [10]. In [5] the instabil-
ity is treated for a logistic equation EPCAG by reducing the equation into a di�erence equation.
On the other hand, in [10] the instability is treated for a scalar di�erential-di�erence equation.

Suppose N denotes the set of natural numbers and R+ denotes the set of nonnegative real
numbers, that is, N = {0, 1, 2, . . . } and R+ = [0,∞). In addition, we will denote the Euclidean
norm in Rn, n ∈ N, by ‖.‖. Consider a sequence {θi}i∈N of real numbers such that 0 = θ0 < θ1 <
· · · < θi < · · · and θi →∞ as i→∞.

We study here the following class of nonlinear di�erential equations with piecewise constant
arguments

ẋ(t) = f(t, x(t), x(β(t))) (1)

where x(t) ∈ Rn, t ∈ R+ and β(t) = θi if t ∈ [θi, θi+1), i ∈ N. Here ẋ(t) denotes the derivative of
function x : R+ → Rn at t. Eq. (1) was considered in [3] for the investigation of stability with the
second Lyapunov method. To the best of our knowledge, the literature lacks instability results via
functions of continuous time.

Based on Lyapunov's �rst instability theorem (see [12]), the present work establishes an insta-
bility result for EPCAG. Then we use the result established here to study the instability of a class
of EPCAG that determines the logistic equation with piecewise constant argument of generalized
type (see [5]).

A continuous function x(·) is a solution to Eq. (1) on R+ if it satis�es the Eq. (1) on the
intervals [θi, θi+1), i ∈ N, and the derivative ẋ(t) exists everywhere with the possible exception of
the points θi, i ∈ N, where one-sided derivatives exist. Let S(x0) denote the set of solutions x(·) to
Eq. (1) on [0,∞) with x(0) = x0. If x ∈ S(x0), we will also use the notation x(t, 0, x0) to denote
x(t). The existence of solutions to EPCAG can be found in [1] and [3].
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As an example of Eq. (1), below we determine the solutions y(·) of the following equation

ẏ(t) = −by(β(t))
(
y(t) +

a

b

)
, (2)

where a and b are nonzero constants of the same sign. If y(0) = y0 and y0 +
a
b > 0, suppose that

y(t) + a
b > 0 for t ∈ (0, c1), with 0 < c1 ≤ θ1. Using separation of variables (see [9]),

y(t) = −a
b
+
(
y0 +

a

b

)
e−by0t,

and we may conclude that c1 = θ1. Since y ∈ S(y0) is continuous, y(θ1) = −ab +
(
y0 +

a
b

)
e−by0θ1 =

y1. If y(t) +
a
b > 0 for t ∈ (θ1, c2), with θ1 < c2 ≤ θ2, we have

y(t) = −a
b
+
(
y1 +

a

b

)
e−by1(t−θ1),

and then c2 = θ2. By mathematical induction,

y(t) = −a
b
+
(
yi +

a

b

)
e−byi(t−θi),

for t ∈ [θi, θi+1), i ∈ N, with yi = y(θi). Similarly, if y0 +
a
b < 0, then S(y0) = {y}, where

y(t) = −a
b
+
(
yi +

a

b

)
e−byi(t−θi),

for t ∈ [θi, θi+1), i ∈ N, with yi = y(θi). Now suppose that y0 = −ab and t ∈ [θ0, θ1). Then

ẏ(t) = ay(t) +
a2

b
,

and from variation of constants formula (see [6]) we may conclude that

y(t) = etay0 +

∫ t

0

e(t−s)a
a2

b
ds,

that is, y(t) = −ab for t ∈ [θ0, θ1). Since y ∈ S(−ab ) is continuous, y(θ1) = y1 = −ab . Hence

ẏ(t) = ay(t) +
a2

b
,

for t ∈ [θ1, θ2). From variation of constants formula,

y(t) = e(t−θ1)ay1 +

∫ t

θ1

e(t−s)a
a2

b
ds,

and then y(t) = −ab for t ∈ [θ1, θ2). By mathematical induction y(t) = −ab for each t ∈ [θi, θi+1),
i ∈ N. We conclude that S(−ab ) = {y}, where y(t) = −

a
b for t ∈ [θi, θi+1), i ∈ N.

We note that the equilibria of Eq. (2) are given by y = 0 and y = −ab .
Throughout the article, we assume the following hypothesis.

(H) For each x ∈ Rn, the function (t, y) 7→ f(t, x, y) is continuous.

Thus, if x ∈ S(x0) then ẋ(·) is continuous as a function de�ned in [θi, θi+1), i ∈ N.
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2 Absolutely Continuous Functions

In this section are considered concepts and results that will be used in the development of the
main result (Theorem 3.1). Below we have the de�nition of an absolutely continuous function (see
for instance [13] and [15]).

De�nition 2.1. A function x : [a, b] → Rn is called absolutely continuous if for any ε > 0, there
exists δ > 0 such that, for any countable collection of disjoint subintervals [ak, bk] of [a, b] satisfying∑

(bk − ak) < δ,

we have ∑
|x(bk)− x(ak)| < ε.

We can also de�ne an absolutely continuous function on a given interval I ⊂ R. We have
the following result concerning absolutely continuous functions. Here we consider the notion of
Lebesgue integral.

Theorem 2.1 ([13]). In order that the function F (x) be an inde�nite integral, it is necessary and
su�cient that it be absolutely continuous.

As we can see in [15], an absolutely continuous function x : [a, b]→ Rn is di�erentiable almost
everywhere, and its derivative ẋ(·) is a Lebesgue integrable function. We also note the Newton-
Leibniz formula is true; that is,

x(t2)− x(t1) =
∫ t2

t1

ẋ(s)ds

for all t1, t2 ∈ [a, b], t1 < t2.
Let V : R+ × Rn → R be a locally Lipschitz continuous function and let x ∈ S(x0). Then the

function w : R+ → R de�ned by w(t) = V (t, x(t)) is absolutely continuous. Indeed, since

x(t) = x(θi) +

∫ t

θi

ẋ(s)ds

for t ∈ [θi, θi+1), i ∈ N, from Theorem 2.1 the function x is absolutely continuous on [θi, θi+1),
i ∈ N. Since x is a function continuous on R+, we conclude that x is absolutely continuous on
[θi, θi+1], i ∈ N. Then w is absolutely continuous on [θi, θi+1], i ∈ N, because V is locally Lipschitz
continuous. Thus, w is absolutely continuous.

3 Lyapunov Instability

From Lyapunov's �rst instability theorem and its proof (as [12, Theorem 9.16]), in Theorem
3.1 we establish an instability result to system given by Eq. (1). Theorem 3.1 is formulated by
using functions of continuous time V , and its proof is similar to [12, Theorem 9.16]. The functions
of continuous time V in Theorem 3.1 are analogous to Lyapunov functions for systems of ordinary
di�erential equations (see for instance [8] and [16]).

Concepts of Lyapunov stability for the system given by Eq. (1) are formulated in a similar way
to ordinary di�erential equations (see [12] and [14]). Below, we consider concepts of stability (in
the sense of Lyapunov) to solution x ≡ 0 of Eq. (1) with initial condition x(0) = x0. For this, we
can assume that f(t, 0, 0) = 0 for all t ∈ R+.
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De�nition 3.1. The equilibrium x = 0 is stable if for any ε > 0 there exists δ = δ(ε) > 0, such
that if ‖x0‖ < δ, then ‖x(t, 0, x0)‖ < ε for all t ≥ 0.

De�nition 3.2. The equilibrium x = 0 of Eq. (1) is unstable if it is not stable.

De�nition 3.3. We say that a continuous function ψ : [0, r1]→ R+ (respectively, ψ : [0,∞)→ R+)
belongs to class K (ψ ∈ K), if ψ(0) = 0 and if ψ is strictly increasing on [0, r1] (respectively, on
[0,∞)).

Below, B(h) denotes the open ball of radius h centered at origin,

B(h) = {x ∈ Rn : ‖x‖ < h}.

Theorem 3.1. Let V : R+ × Rn → R be a locally Lipschitz continuous function. Suppose that in
every neighborhood of the origin there are points x such that V (0, x) > 0. Also suppose that there
exist functions ψ1, ψ2 ∈ K satisfying the following conditions:

(i) for some h > 0, |V (t, x)| ≤ ψ1(‖x‖) for all (t, x) ∈ R+ ×B(h);

(ii) d
dtV (t, φ(t)) ≥ ψ2(‖φ(t)‖) for t ∈ (θi, θi+1), i ∈ N, and for all φ ∈ S(x0) with ‖φ(t)‖ < h, for
each t ∈ R+.

Then the equilibrium x = 0 of Eq. (1) is unstable.

Proof. Take ε > 0 such that ε ≤ h. Consider a sequence of points {xm}m∈N satisfying 0 < ‖xm‖ <
ε, V (0, xm) > 0 and

lim
m→∞

xm = 0.

Let φm ∈ S(xm) and wm : R+ → R, with wm(t) = V (t, φm(t)). Since wm is absolutely continuous,

wm(t)− wm(0) =

∫ t

0

d

ds
wm(s)ds

for all t ∈ R+. Then ‖φm(tm)‖ = ε for some tm ∈ R+. For otherwise,

ψ1(‖φm(t)‖) ≥ V (t, φm(t)) = wm(t)

= wm(0) +

∫ t

0

d

ds
wm(s)ds

= wm(0) +

∫ t

0

d

ds
V (s, φm(s))ds

≥ wm(0) +

∫ t

0

ψ2(‖φm(s)‖)ds

≥ wm(0)

for all t ∈ R+. Hence
‖φm(t)‖ ≥ ψ−11 (wm(0)) = αm > 0

for all t ∈ R+. Thus,

ψ1(ε) > ψ1(‖φm(t)‖) ≥ wm(t)

≥ wm(0) +

∫ t

0

ψ2(‖φm(s)‖)ds

≥ wm(0) +

∫ t

0

ψ2(αm)ds

= wm(0) + tψ2(αm)

for all t ∈ R+. Taking t→∞ we get a contradiction. So, the equilibrium x = 0 is unstable.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 9, n. 1, 2022.

DOI: 10.5540/03.2022.009.01.0264 010264-4 © 2022 SBMAC

http://dx.doi.org/10.5540/03.2022.009.01.0264


5

As an example, for the use of Theorem 3.1, we consider a class of EPCAG determined by a
logistic equation given in [5]. So, consider the logistic equation

ẋ(t) =
(
a− bx(β(t))

)
x(t), (3)

where a and b are nonzero constants of the same sign, β(t) = θi if t ∈ [θi, θi+1), i ∈ N. If a > 0,
using Theorem 3.1 we can conclude that the equilibrium x = 0 is unstable. Let h > 0 be such that
hb < a. Let V (t, x) = x2 and φ ∈ S(x0). If ‖φ(t)‖ < h for all t ∈ R+, we have

d

dt
V (t, φ(t)) = 2φ(t)

d

dt
φ(t)

= 2
(
a− bφ(β(t))

)
(φ(t))2

≥ 2
(
a− bh

)
(φ(t))2

= ψ2(‖φ(t)‖)

for t ∈ (θi, θi+1), i ∈ N, where ψ2(u) = 2
(
a − bh

)
u2. From Theorem 3.1 the equilibrium x = 0 of

Eq. (3) is unstable.
Using the transformation y = x− a

b , Eq. (3) becomes Eq. (2). The qualitative behavior of the
equilibrium x = a

b (of Eq. (3)) is equivalent to that of the equilibrium y = 0 (of Eq. (2)). Finding
a function V as in Theorem 3.1 may not be an easy task. Similar to the search for a Lyapunov
function for systems of ordinary di�erential equations (see [8]).

4 Final Considerations

The article establishes a result on Lyapunov instability for EPCAG from Lyapunov's second
method for ordinary di�erential equations. The result stablished here is an analogy of Lyapunov's
�rst instability theorem. As future work, there is the possibility of further analogies between
EPCAG and instability results for ordinary di�erential equations, such as Lyapunov's second in-
stability theorem and Chetaev's instability theorem.
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