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Discrete Logistic Growth Model with Capability to Go

Backward in Time, Based on Successive Operations
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Abstract. This paper aims to tackle the classic discrete logistic model for population growth using
the formalism of successive mathematical operations (see [1]-[2]). This approach allows obtaining a
closed-form expression with the capability of retro-action for generations before the �rst observed
generation. Finally, to exemplify the advantages of this representation, it is used to compute the
population size after and, outstandingly, before the reference, extending easily the usual discrete
logistic growth model for all integer arguments.
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1 Introduction

The logistic equation of population growth is one of the most known and used relation to model
problems of ecology, and is applied in various areas of science. It was proposed by Verhulst [3] to
solve the Malthusian unlimited exponential model, by introducing a regulation factor [4]. Although
originally formulated in continuous time, there are several systems which are better characterized
by discrete time considerations, when seasonal reproduction takes place or data are collected in
spaced periods; so that the importance of its discrete version, treated here to circumvent several
complexities normally found when searching solutions to this recursive-type equation [5]. From
the mathematical point of view, the methodology of successive transformations introduced in [1],
and successfully applied in [6]-[7], can contribute to deal with this kind of models even to run
backwards in the generations, as done in the present work.

The classical discrete logistic growth equation assumes that the expected number of o�spring
varies with population size, such that

N(t+1) = N(t) + rN(t)[ 1−N(t)/k ]; ∀ t ∈ N and ∀ k, r ∈ R ; k > 0 and r ̸= 0 , (1)

where N(t+1) is the number of individuals in the next generation, N(t) is the number of individuals
in the current generation, r is the rate of growth, and k is the carrying capacity [4].

In this work, it will be proposed a new solution to (1) based on the successive operations de�ned
in [1], including model generalization for any integer value of t. Then, the proposed solution is
applied to go back and forward from the reference generation.

2 The Recursive Normalized Discrete Logistic Growth Model

Firstly, it will be recalled a key result on successive operations from [1]: If a mathematical
model can be represented by the general form

G(t+ 1) = F(t+ 1)G(t), (2)
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with F,G : Z→ R, it is possible to search for a solution applying successive products, as de�ned
in [1]. Then, the mathematical model (1) will be manipulated to obtain an equivalent form as in
(2), in order to generate the proposed solution by the new successive operation methodology, with
the extension from N to Z. In this way, gathering the N(t) in equation (1) renders:

N(t+1) = (1 + r)N(t)− (r/k)N(t)2; ∀ t ∈ N and ∀ k, r ∈ R ; k > 0 and r ̸= 0 , (3)

Multiplying (3) by k/r ; r ̸= 0 and reordering, leads to

N(t)2 = (k/r + k)N(t)− (k/r)N(t+1); ∀ t ∈ N and ∀ k, r ∈ R ; k > 0 and r ̸= 0 . (4)

To simplify (4) and obtain an expression similar to (2), it will be de�ned the coe�cients

A (k, r) = k/r + k and B (k, r) = −k/r ; ∀ k, r ∈ R ; k > 0 and r ̸= 0 , (5)
to obtain

N(t)2 = AN(t) +BN(t+1); ∀ t ∈ N , ∀ A+B ̸= 0 , A/B ̸= −1 , and B ∈ R∗ , (6)

where R∗ = R− {0} .
Expression (6) is a key in this methodology. It can be observed easily that with this expression

one can go from t to t + 1, as usual, however, it can be used to go back from t + 1 to t, even for
t < 0, by observing that it is a second-order polynomial equation in N(t). So, henceforth, it is
possible to assume that expression (6) is valid for all t ∈ Z. Owing this fact, after dividing (6) by
N(t), a simple algebra allows to obtain:

N(t+1) = [ N(t)−A

B ]N(t) ; ∀ t ∈ Z , A+B ̸= 0 , A/B ̸= −1 , and B ∈ R∗ . (7)

By comparing (7) with (2), these expressions have the same form and we can identify

F(t+ 1) ≡ (N(t)−A )/B , (8)

where F(t+ 1) is the growth factor. With this, it is possible to obtain the discrete logistic growth
model solution by a successive product, with the advantage of an extension from N to Z .

Firstly, the formalism of successive operations needs that the target sequence achieves the value 1
for t = 0. This fact forces the following normalization:

n(t) = N(t) /NR ; NR = N(0) and NR ∈ R∗ . (9)

As a consequence of that normalization, in all the cases, one has n(0) = 1 . (10)

To solve (7) by applying successive operations, �rstly it will be established the sequence indexed
by integers of the normalized number of individuals in each generation:

(n(i)) i∈Z = ( ... , n(−2), n(−1), n(0) = 1, n(1), n(2), ... , n(i), ... ); n(i) ∈ R. (11)

Multiplying and dividing (7) by NR , and making n(t) = N(t)/NR α = A/NR , β = B/NR , and
using (10), it is obtained the normalized discrete logistic growth model system

n(0)= 1 ;

n(t+1) = [ n(t)− α

β ]n(t) ; (12)

where α = A/NR, β = B/NR and considering ∀ t ∈ Z , α+ β ̸= 0 , α/β ̸= −1 , and β ∈ R∗ .

Expression (12) can be seen as a recursion-equation system that satis�es a successive product
as established in [1], particularized for f : Z→ R, and the usual multiplication, as follows:
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De�nition 2.1. Let G(Φ, ·) be the group where Φ is the set of all functions f : Z → R, SZ the

set of all sequences in the general form

(f(i)) i∈Z = ( ... , f(−2), f(−1), f(0), f(1), f(2), ... , f(i), ... ); f(i) ∈ R , (13)

and p·p the usual arithmetic multiplication. Under these conditions, it is de�ned the function

PZ : SZ×Z→ F by

 f(i)

−
· i= 0

= 1 ; and

f(i)

−
· i= t+ 1

= f(t+ 1) f(i)

−
· i= t

; ∀ t ∈ Z
(14)

where the notation used was introduced in [1] . By comparing (12) and (14), it is immediate to
conclude that (n(t)− α )/β = f(t+ 1) , (15)

and, after the assigning t← t− 1 in (15), it follows that

n(t) = [ n(i− 1)− α

β ]
·

−

i= t

, (16)

for ∀ t ∈ Z , α+ β ̸= 0 , α/β ̸= −1 , and β ̸= 0 ∈ R , which is the solution of (12) .

3 Finding the Normalized Number of Individuals

The classical results for the usual positive values of t can be easily obtained by (16). Original
results are now obtained here by the present methodology, that is the number of individuals for
previous generations from the reference

If t = 0 in (16), then n(0) = 1. Now, making t = −1:

n(−1) = [ n(i− 1)− α

β ]
·

−

i= −1
=

β

[n(−1)− α ]
; α+ β ̸= 0 , α/β ̸= −1 , and β ∈ R∗ . (17)

By reordering (17) : n(−1)2 − αn(−1)− β = 0 ; α+ β ̸= 0 , α/β ̸= −1 , β ∈ R∗ . (18)

Expression (18) is a quadratic equation in n(−1) and to which the solution is

n(−1) =
α∓

√
xyα2 + 4β

2
; ∀α ∈ R, ∀β ∈ R∗ and α2 + 4β ⩾ 0 . (19)

Making t = −2 in (16):

n(−2) = [ n(i− 1)− α

β ]
·

−

i= −2
=

β

[n(−1)− α ]

β

[n(−2)− α ]
. (20)

In (20) it is possible to use (17), to get

n(−2) = [ n(i− 1)− α

β ]
·

−

i= −2
= n(−1) β

[n(−2)− α ]
; α+ β ̸= 0 , α/β ̸= −1 , β ∈ R∗ . (21)

Reordering (21), one has

n(−2)2 − αn(−2)− β n(−1) = 0 ; α+ β ̸= 0 , α/β ̸= −1 , and β ∈ R∗ . (22)

Expression (22) is a quadratic equation in n(−2) , then

n(−2) =
α∓

√
xyα2 + 4β n(−1)

2
; ∀α ∈ R, ∀β ∈ R∗ and α2 + 4β n(−1) ⩾ 0 . (23)

By �nite induction, it is possible to obtain the general equation

n(t)2 − αn(t)− β n(t+ 1) = 0 , (24)
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whose solution allows to compute by recurrence the normalized number of individuals for all pre-
vious generations before the reference, that is

n(t) =


1 ; if t = 0 ; and

α∓
√
xyα2 + 4β n(t+ 1)

2
; if t < 0 ;

(25)

where α , β ̸= 0 , α+ β ̸= 0 , α/β ̸= −1 ; and α2 + 4β n(t+ 1) ⩾ 0 .

4 Application

The successive product closed formula will be applied to compute the number of individuals in
the population after as well as before the reference generation n(0) .

Here, it will be considered an initial population composed of 200 individuals, a growth factor of
1.4 when there are 1 000 individuals, and 5 000 as the maximum acceptable number of individuals.
This data have been taken from [8] (see also [9]) , where it was analyzed using the standard way,
that is, t ⩾ 0. Now, in the present application, the results of [8] will be extrapolated, since the
successive product allows any integer value of t, and it will be also possible to answer questions
about the previous generations (t < 0) by the direct use of expression (16).

From (8), one has F(t+1) = (N(t+ 1)−A )/B ; and solving the system{
1.4 = ( 1 000−A )/B ,

1.0 = ( 5 000−A )/B ,
(26)

it is possible to �nd A = 15 000 and B = −10 000 , which when normalized are α = 75 and
β = −50 . By introducing these values in (16) one has

n(t) = [ 75− n(i− 1)

50 ]
·

−

i= t

; ∀ t ∈ Z , (27)

as the successive product solution for the growth model of interest.

Table (1) reports the number of individuals, computed with (27) for t ⩾ 0 which are the same
results obtained in [8].

Table 1: Values of f(n(t− 1)), n(t) and N(t) , 0 ⩾ t ⩾ 17 , for α = 75 and β = −50

t f(n(t− 1)) n(t) N(t) t f(n(t− 1)) n(t) N(t)

0 unnecessary 1.000000 200.000 9 1.204763 17.784527 3556.90
1 1.480000 1.480000 296.000 10 1.144309 20.351003 4070.20
2 1.470400 2.176192 435.238 11 1.092980 22.243238 4448.65
3 1.456476 3.169572 633.914 12 1.055135 23.469624 4693.92
4 1.436608 4.553434 910.687 13 1.030607 24.187971 4837.59
5 1.408931 6.415476 1283.09 14 1.016240 24.580798 4916.16
6 1.371690 8.800047 1760.01 15 1.008384 24.786884 4957.38
7 1.323999 11.651254 2330.25 16 1.004262 24.892534 4978.51
8 1.266975 14.761846 2952.37 17 1.002149 24.946036 4989.21

To be more clear, Table(1) values are computed by the following steps:
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Algorithm 1 x
x
Steps to compute the number os individuals, from (9), (14), and (15).

1: Input: α, β, NR, t ⩾ 0,

2: Initialization: i = 0, n(0) = 1.00000000, N(0) = NR

3: while ( i < t ) do

4: i← i+ 1

5: Normalized growth rate function: f(i) = (n(i− 1)− α )/β (28)
6: Normalized number of individuals:

n(i) = f(i)n(i− 1) (29)
7: Number of individuals:

N(i) = NR n(i) (30)
end while

8: Output: values of i, f(i) if t > 0, n(i), and N(i).

Now, to compute n(t) for t < 0 one shall use (25) with α = 75 and β = −50. There are two
di�erent possible values :

n∓(t) =
75∓

√
xy5625− 200n(t+ 1)

2
; 5625− 200n(t+ 1) ⩾ 0 . (31)

Table (2) shows the elements of two new possible sequences computed through (31), considering
−7 ⩽ t ⩽ 0.

Table 2: Possible Values of n∓(t) ; � 7 ⩽ t ⩽ 0, for α = 75 and β = −50 :

t n−(t) n+(t) t n−(t) n+(t)

0 1.000000000 74.00000000 −3 0.302003473 74.69799653
−1 0.672700343 74.32729966 −4 0.201879050 74.79812095
−2 0.451181087 74.54881891 −5 0.134828422 74.86517158

There are two reasons for not consider the n+(t) values. Firstly, as already commented before, the
formalism of successive operations needs that n(0) = 1, which is not veri�ed for n+(0). Secondly,
the n+(t) values generate complex results insofar as t becomes more negative. Then, in Table (3)
there are the reference and some previous generation numbers of individuals, obtained using only
the n−(t) values.

Table 3: Values of n(t) and N(t) , �17 ⩽ t ⩽ 0 , for α = 75 and β = −50 :

t n(t) N(t) t n(t) N(t)

0 1.000000000 200.0000000 −9 0.026709904 5.3419808
−1 0.672700343 134.5400686 −10 0.017810832 3.5621665
−2 0.451181087 90.2362174 −11 0.011875769 2.3751537
−3 0.302003473 60.4006946 −12 0.007918015 1.5836030
−4 0.201879050 40.3758100 −13 0.005279048 1.0558096
−5 0.134828422 26.9656844 −14 0.003519531 0.7039061
−6 0.089993595 17.9987190 −15 0.002346427 0.4692844
−7 0.060043800 12.0087601 −16 0.001564317 0.3128635
−8 0.040050588 8.0101175 −17 0.001042893 0.2085785

In Figure (1) it is shown all the results from Table (1) and Table (3) , covering all generations, that
is, the reference, the subsequent and the previous ones.

To be more clear, Table (3) values are computed by the following steps:
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Algorithm 2 x
x
Steps to compute the number of individuals, from (9), and (25).

1: Input: α, β, NR, t ⩽ 0,

2: Initialization: i = 0, n(0) = 1.00000000, N(0) = NR

3: while ( i > t ) do

4: i← i− 1

5: if
(
α2 + 4β n(i+ 1) ⩾ 0

)
then

6: 1st root: n−(t) =
α−

√
xyα2 + 4β n(t+ 1)

2
(32)

7: 2nd root: n+(t) =
α+

√
xyα2 + 4β n(t+ 1)

2
(33)

8: Choose n(i): n(i) = n−(t), or n(i) = n+(t)

9: Number of individuals: N(i) = NR n(i) (34)

end if

end while

10: Output: values of i, n(i), and N(i).

It should be noted that it was used the same original setup of [8]. Despite this fact, the math-
ematical model solution proposed here provides a large range of new results. For example, by
direct inspection of Table (3) it will be possible to conclude that the �rst individual arose in the
thirteenth generation prior to the reference, as highlighted in Figure (2).

Figure 1: All the results for N(t): the usual set and the extension .

Figure 2: Detail of the extended results for N(t) , highlighting the
most probable generation where the �rst individual arose.
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5 Final Considerations

In this work, the discrete logistic equation has been solved by a new approach considering
successive operations, based on [1], in particular by the successive product methodology, which
made possible to step backwards through the generations for building automatically the extensions
for past generations relative to the reference one. The expressions obtained with this method are
simple and compact. The results obtained are consistent with the expected values since from any
previous generation it is possible to determine the subsequent amount of individuals. This method
generated an extension to the integer set, capable of directly running backward in the generations
to capture the most probable generation in which the population started to grow. Besides, this
work constitutes a basis for modeling other kinds of discrete logistic growth, by generalizing (16) ,
with the additional advantage of providing an extension from the natural domain to the integer
one.
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