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Abstract: We obtain decay rates for eigenvalues and singular values of positive integral opera-
tors generated by square integrable kernels on the unit sphere in Rm+1, m ≥ 2, under assumptions
on both, certain derivatives of the kernel and the integral operators generated by such derivatives.
This type of problem is common in the literature but the assumptions are usually defined using
standard differentiation in Rm+1. The rates we present depend on both, the differentiability or-
der used to define the smoothness conditions and the dimension m. Some of them are shown to
be optimal. The results we show here are published in [2] except Theorem 2.5 which extends the
main result from there.
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1 Introduction

Let m ≥ 2 be an integer and Sm be the unit sphere in Rm+1. Let dx be the usual volume element
on Sm and L2(Sm) the Hilbert space of all square-integrable complex functions on Sm endowed
with the inner product

〈f, g〉2 :=
1
σ

∫
Sm

f(x)g(x) dx, f, g ∈ L2(Sm),

and the derived norm || · ||2, the normalization constant being defined by σ :=
∫
Sm dx.

We deal with integral operators defined by

K(f) =
∫
Sm

K(·, y)f(y) dy, (1.1)

in which the generating kernel K : Sm × Sm → C is an element of L2(Sm × Sm). In this case,
(1.1) defines a compact operator on L2(Sm).

If K is positive definite in the sense that∫
Sm

∫
Sm

K(x, y)f(x)f(y) dxdy ≥ 0, f ∈ L2(Sm),
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then K becomes a self-adjoint operator and the standard spectral theorem for compact and
self-adjoint operators is applicable and we can write

K(f) =
∞∑
n=0

λn(K)〈f, fn〉2fn, f ∈ L2(Sm),

in which {λn(K)} is a sequence of nonnegative reals (possibly finite) decreasing to 0 and {fn}
is an 〈·, ·〉2-orthonormal basis of L2(Sm). The numbers λn(K) are the eigenvalues of K and the
sequence {λn(K)} takes into account possible repetitions implied by the algebraic multiplicity of
each eigenvalue. The positive definiteness of K means nothing but the positivity of the integral
operator K. Since it relates to the inner product above, it is a common sense to call it L2-positive
definiteness.

We observe that the addition of continuity to K implies that K is also trace-class (nuclear)
([5, 8, 9]), that is, ∑

f∈B
〈K∗K(f), f〉1/22 <∞,

whenever B is an orthonormal basis of L2(Sm). In particular, it follows from Mercer’s Theorem
[3] that nuclearity is equivalent to

∞∑
n=1

λn(K) =
∫
Sm

K(x, x) dx <∞,

in that case. As so we can extract the most elementary result on decay rates for the eigenvalues
of such operators, namely,

λn(K) = o(n−1).

The notation above means that the sequence of eigenvalues approximates to zero “faster” than
the sequence {n−1}, i.e., limn→∞ nλn(K) = 0.

If the integral operator K is compact but not self-adjoint then decay rates for the singular
values of the operator becomes the focus. If T is a compact operator on L2(Sm), its eigenvalues
can be ordered as |λ1(T )| ≥ |λ2(T )| ≥ · · · ≥ 0, counting multiplicities ([13]). The singular
values of T are, by definition, the eigenvalues of the compact, positive and self-adjoint operator
|T | := (T ∗T )1/2. The sequence {sn(T )} of singular values of T can also be ordered in a decreasing
manner, with repetitions being included according to their multiplicities as eigenvalues of |T |.
That being the case, the classical Weyl’s inequality ([9, p.52])

Πn
j=1|λj(T )| ≤ Πn

j=1sj(T ), n = 1, 2, . . . ,

provides the convenient bridge between eigenvalues and singular values. We remark that the
inequality characterizing the traceability of a compact non self-adjoint operator T on L2(Sm)
reduces itself to

∞∑
n=1

sn(T ) <∞.

Classical references on eigenvalues and singular values distribution of compact operators on
Banach spaces are [13, 18].

The idea of nuclearity can be extended as follows. For p > 0 we say that a compact operator
T belongs to the Schatten p-class Sp if

∞∑
n=1

(sn(T ))p <∞.

For p ≥ 1, Sp is a Banach space with the norm

‖T‖p :=

( ∞∑
n=1

(sn(T ))p
)1/p
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In particular, S2 coincides to the space of Hilbert-Schmidt operators. See [9] for more information
on this subject.

The object of study in this paper is the analysis of decay rates for the sequence {λn(K)}
under additional assumptions on the kernel K and certain derivatives of it. Results of this
very same nature can be found in many references abroad and not necessarily in the context
discussed here. In particular, we mention the use of integrated Hölder assumptions on K in
[1, 4, 15] and of Lipschitz type in [6, 7]. As a matter of fact, the ideas of some of these cited
papers have their origin in [12, 14] where similar kernels have been studied. The intention here
is to present the results obtained in [2] in which we use the Laplace-Beltrami derivative to define
the basic assumptions needed (we also extend one of them). As far as we know, this approach is
new and fits more properly since such derivative is a concept genuinely spherical, having many
interesting properties and applications in connection with Approximation Theory (see [16, 17]
and references therein) and other areas as well. By the way, the Laplace-Beltrami derivative was
introduced by W. Rudin in [19] and further developed by Wherens in [20, 21], but in the case
m = 2 only. The general case is fully discussed in the survey-like paper [17].

2 Statement of the main results

The Laplace-Beltrami derivative is a variation of the usual derivative on Sm when, in the defini-
tion of the later, one replaces the usual translation operator with the spherical shifting operator,
which is defined by the formula

Tmε (f)(x) :=
1

σm−1(1− ε2)(m−1)/2

∫
x·y=ε

f(y) dy, x ∈ Sm.

Here, ε ∈ (−1, 1), “ · ” is the usual inner product of Rm+1 and dy denotes the measure element
of the rim {y ∈ Sm : x ·y = ε} of the spherical cap {y ∈ Sm : x ·y ≥ ε}. If we write ∆ε := I−Tmε ,
in which I denotes the identity operator, a function f ∈ L2(Sm) is said to be differentiable in
the sense of Laplace-Beltrami if there exists Df ∈ L2(Sm) such that

lim
ε→1−

∥∥(1− ε)−1∆ε(f)−Df
∥∥

2
= 0.

The symbol ‖ ·‖2 above stands for the usual norm of L2(Sm). The function Df is then called the
Laplace-Beltrami derivative of f . Higher order derivatives are defined by the formulas D1 = D
and

Dr := D1 ◦ Dr−1, r = 2, 3, . . . .

We now introduce basic Sobolev-type spaces for functions on Sm.

Definition 2.1. The space of all complex functions on Sm which are differentiable, up to order
r, in the sense explained above, will be denoted by W r

2 .

The operator Dr is a multiplier operator in the sense we now explain. If Hm+1
n is the space

of all n-th degree spherical harmonics in m+ 1 variables then Hm+1
n is a subset of W r

2 and

DrY =
nr(n+m− 1)r

mr
Y, Y ∈ Hm+1

n .

It acts like a self-adjoint operator on W r
2 , that is,

〈Drf, g〉2 = 〈f,Drg〉2, f, g ∈W r
2 .

For more information on the Laplace-Beltrami derivative we refer the reader to [17] and ref-
erences mentioned there. In particular, one can find explained there a connection among the
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Laplace-Beltrami derivative, the usual derivative for functions on Sm and the so-called r-th
spherical modulus of smoothness.

The action of the Laplace-Beltrami derivative on kernels is done separately: we keep one
variable fixed and differentiate with respect to the other. The symbol DryK will indicate the
r-th order derivative of a kernel K with respect to the variable y (we will never differentiate
with respect to the first variable x). For r ∈ Z+, we find convenient to introduce the following
notation

K0,r(x, y) := DryK(x, y), x, y ∈ Sm,

to abandon the derivative symbols. The integral operator associated with K0,r will be written
as K0,r. At this point, it is convenient to introduce Sobolev-type spaces for kernels in a formal
way.

Definition 2.2. A kernel K ∈ L2(Sm × Sm) belongs to W r
2 when K(x, ·) ∈W r

2 , x ∈ Sm a.e..

We are ready to describe the main results of the paper. We emphasize that all the results
take for granted the ordering on either the eigenvalues or singular values mentioned before. At
first, we will prove a theorem without the L2-positive definiteness assumption on K and obtain
a decay rate for the sequence of singular values of K.

Theorem 2.3. Let r be a positive integer at least (m + 1)/2, K an element of W r
2 and

p ∈ (m+ 1, 2r + 1]. If K0,r is bounded then

sn(K) = o(n−1−(2r+1−p)/m).

We observe that the fact that the derivatives DryK(x, ·) exist for x ∈ Sm a.e. does not imply
that K0,r is a bounded operator. As so, the assumption on K0,r in Theorem 2.3 is reasonable.
Clearly, the smaller the parameter p, the better the estimate.

The next two results incorporate L2-positive definiteness as an assumption. As so, they de-
scribe decay rates for the eigenvalues of K under certain hypotheses on either K0,r or K0,r.

Theorem 2.4. Let K be a L2-positive definite kernel in W r
2 . If K0,r belongs to L2(Sm × Sm)

then
λn(K) = o(n−1/2−2r/m).

If we assume K0,r belongs to some Schatten p-class instead the basic assumption in Theorem
2.4 then we obtain the following improvement on the previous decay rate.

Theorem 2.5. Let K be a L2-positive definite kernel in W r
2 . If K0,r ∈ Sp then

λn(K) = o(n(−1/p)−(2r/m)).

We state the next result because in this case we can show the decay rate are the best possible.

Corollary 2.6. Let K be a L2-positive definite kernel in W r
2 . If K0,r is trace-class then

λn(K) = o(n−1−2r/m).

To close the section, we would like to inform the reader that the results above resemble those
proved in [8, p.120] and [10, 11] for the case of an interval. As a matter of fact, one can interpret
Theorem 2.4 and Corollary 2.6 as spherical versions of some of the results proved in those
references.
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3 Optimality

Now we construct examples to show the decay rates presented in Theorem 2.4 and Corollary 2.6
are optimal.

Theorem 3.1. Let ε > 0 be fixed. If r ≥ 0 then there exists a L2-positive definite kernel K
possessing the following features:
(i) K belongs to W r

2 ;
(ii) K0,r is trace-class;
(iii) λn(K) = o(n−1−2r/m);
(iv) If limn→∞ n

ε+1+2r/mλn(K) exists then it is positive.

Proof. It is enough to consider the kernel having the following condensed spherical harmonic
expansion

K(x, y) ∼ 1 +
∞∑
n=1

N(m,n)
nm(1+ε)+2r

Pmn (x · y), x, y ∈ Sm.

and show that it satisfy (i)-(iv).

In a similar way one can prove the following result.

Theorem 3.2. Let ε > 0 be fixed. If r ≥ m/4 then there exists a L2-positive definite kernel K
possessing the following features:
(i) K belongs to W r

2 ;
(ii) K0,r belongs to L2(Sm × Sm);
(iii) λn(K) = o(n−(m+4r)/2m);
(iv) If limn→∞ n

ε+(m+4r)/2mλn(K) exists then it is positive.

Proof. It suffices to consider the kernel K having a condensed spherical harmonic expansion
in the form

K(x, y) ∼ 1 +
∞∑
n=1

N(m,n)
nm(ε+1/2)+2r

Pmn (x · y), x, y ∈ Sm.
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