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Let A := {v1, v2, . . . , vn} be a �nite subset of Rm and consider a given point p ∈ Rm. The
convex hull membership problem (CHMP) consists in deciding whether p ∈ conv(A), where
conv(A) denotes the convex hull of A. This problem is related to fundamental concepts in linear
programming and �nds important applications in computational geometry [3, 4].

One can formulate CHMP as

min
x∈∆n

1

2
∥Ax− p∥2, (1)

where ∆n := {x ∈ Rn |
∑n

i=1 xi = 1, x ≥ 0} is the unit simplex in Rn and A is the matrix whose
columns are the vectors in A. Another possible formulation is given by

min
y∈Rm

1

2
∥y − p∥2

s.t. y ∈ conv(A).

(2)

Notice that the optimal value for (1) and (2) is zero if and only if p ∈ conv(A).
These mathematical programming formulations suggest the use of �rst-order methods such as

projected gradient and conditional gradient to solved CHMP.
More recently, a geometric algorithm has been proposed based on the following theorem of

alternatives [4, Theorem 4].
Theorem 1 For a given set A := {v1, v2, . . . , vn} ⊂ Rm and a point p ∈ Rm, precisely one of

the two conditions is satis�ed:

1. For all p′ ∈ conv(A), there exists vi ∈ A such that ∥p′ − vi∥ ≥ ∥p− vi∥;

2. There exists p′ ∈ conv(A) such that ∥p′ − vi∥ < ∥p− vi∥, for all i = 1, . . . , n.

This result induces the following algorithm. Given pk ∈ conv(A), choose a vi ∈ A \ {pk} such
that ∥vi − p∥ ≤ ∥vi − pk∥ and de�ne pk+1 as the point in the line segment pkvi closest to p.
If such vi does not exist, then it is possible to show that the hyperplane given by the equation
(p−pk)

T y = (∥p∥2−∥pk∥2)/2 separates p from conv(A), and thus p /∈ conv(A). Since each iteration
involves the triangle with vertices p, pk and vi, this algorithm is called Triangle Algorithm (TA).

In this work, we �rst discuss similarities and di�erences between TA and conditional gradient
(also know as Frank-Wolfe [6]). Then, on the basis of Theorem 1, we develop suitable stopping
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criteria for CHMP to be integrated into other �rst-order methods, allowing a fair numerical com-
parison between those and TA. Our numerical study reveals that there is no clear winner, and the
method of choice depends on the geometry of conv(A) as well as on the location of p.

Finally, we consider as an application the so-called irredundancy problem, which consists in
determining all the extreme points of conv(A). This is important, for example, in determining
Minimum Volume Enclosing Ellipsoid (MVEE) [5] and Convex Hull Approximation [2], and in
other problems in data science.

To address the irredundancy problem, we consider a scheme proposed in [1] that can be de-
scribed as follows. Choose a v ∈ A and return a point in A that is farthest from v, say v′ (this v′

is an extreme point of A [1, Proposition 3]). Add v′ to the working set Â. Now, randomly select
a point v ∈ A\Â and determine if v ∈ conv(Â). If v ∈ conv(Â) we remove v from A. Otherwise,
we can build a hyperplane, say, described by cT y = η, which separates v from conv(Â). De�ne the
set A′ := argmax{cT y, y ∈ A \ Â}. Choose u ∈ A′ and obtain w ∈ A′ farthest from u. Add w to
Â and remove it from A. Repeat this process until A is empty. Â will be an approximate set of
extreme points of conv(A). Notice that in each step of this scheme, a CHMP needs to be solved,
and we could apply the �rst-order methods mentioned above.
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