Trabalho apresentado no XLI CNMAC, Unicamp - Campinas - SP, 2022.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics Preprint

First-order methods for the convex-hull membership problem and applications

Rafaela Filippozzi¹ Douglas S. Goncalves² Department of Mathematics, Federal University of Santa Catarina, Florianópolis, SC Luiz-Rafael Santos³

Department of Mathematics, Federal University of Santa Catarina, Blumenau, SC

Let $\mathcal{A} \coloneqq \{v_1, v_2, \dots, v_n\}$ be a finite subset of \mathbb{R}^m and consider a given point $p \in \mathbb{R}^m$. The convex hull membership problem (CHMP) consists in deciding whether $p \in \text{conv}(\mathcal{A})$, where $\operatorname{conv}(\mathcal{A})$ denotes the convex hull of \mathcal{A} . This problem is related to fundamental concepts in linear programming and finds important applications in computational geometry [3, 4].

One can formulate CHMP as

$$\min_{x \in \Delta_n} \quad \frac{1}{2} \|Ax - p\|^2, \tag{1}$$

where $\Delta_n \coloneqq \{x \in \mathbb{R}^n \mid \sum_{i=1}^n x_i = 1, x \ge 0\}$ is the unit simplex in \mathbb{R}^n and A is the matrix whose columns are the vectors in \mathcal{A} . Another possible formulation is given by

$$\min_{\substack{y \in \mathbb{R}^m \\ \text{s.t.}}} \frac{1}{2} \|y - p\|^2 \\ \text{s.t.} \quad y \in \text{conv}(\mathcal{A}).$$
(2)

Notice that the optimal value for (1) and (2) is zero if and only if $p \in \text{conv}(\mathcal{A})$.

These mathematical programming formulations suggest the use of first-order methods such as projected gradient and conditional gradient to solved CHMP.

More recently, a geometric algorithm has been proposed based on the following theorem of alternatives [4, Theorem 4].

Theorem 1 For a given set $\mathcal{A} \coloneqq \{v_1, v_2, \dots, v_n\} \subset \mathbb{R}^m$ and a point $p \in \mathbb{R}^m$, precisely one of the two conditions is satisfied:

- 1. For all $p' \in \text{conv}(\mathcal{A})$, there exists $v_i \in \mathcal{A}$ such that $||p' v_i|| \ge ||p v_i||$;
- 2. There exists $p' \in \text{conv}(\mathcal{A})$ such that $||p' v_i|| < ||p v_i||$, for all $i = 1, \ldots, n$.

This result induces the following algorithm. Given $p_k \in \operatorname{conv}(\mathcal{A})$, choose a $v_i \in \mathcal{A} \setminus \{p_k\}$ such that $||v_i - p|| \leq ||v_i - p_k||$ and define p_{k+1} as the point in the line segment $p_k v_i$ closest to p. If such v_i does not exist, then it is possible to show that the hyperplane given by the equation $(p-p_k)^T y = (||p||^2 - ||p_k||^2)/2$ separates p from conv(\mathcal{A}), and thus $p \notin \text{conv}(\mathcal{A})$. Since each iteration involves the triangle with vertices p, p_k and v_i , this algorithm is called Triangle Algorithm (TA).

In this work, we first discuss similarities and differences between TA and conditional gradient (also know as Frank-Wolfe [6]). Then, on the basis of Theorem 1, we develop suitable stopping

¹rafaela.filippozzi@gmail.com

 $^{^{2} \}rm douglas.goncalves@ufsc.br$

³l.r.santos@ufsc.br

$\mathbf{2}$

criteria for CHMP to be integrated into other first-order methods, allowing a fair numerical comparison between those and TA. Our numerical study reveals that there is no clear winner, and the method of choice depends on the geometry of $conv(\mathcal{A})$ as well as on the location of p.

Finally, we consider as an application the so-called irredundancy problem, which consists in determining all the extreme points of $conv(\mathcal{A})$. This is important, for example, in determining Minimum Volume Enclosing Ellipsoid (MVEE) [5] and Convex Hull Approximation [2], and in other problems in data science.

To address the irredundancy problem, we consider a scheme proposed in [1] that can be described as follows. Choose a $v \in \mathcal{A}$ and return a point in \mathcal{A} that is farthest from v, say v' (this v'is an extreme point of \mathcal{A} [1, Proposition 3]). Add v' to the working set $\hat{\mathcal{A}}$. Now, randomly select a point $v \in \mathcal{A} \setminus \hat{\mathcal{A}}$ and determine if $v \in \operatorname{conv}(\hat{\mathcal{A}})$. If $v \in \operatorname{conv}(\hat{\mathcal{A}})$ we remove v from \mathcal{A} . Otherwise, we can build a hyperplane, say, described by $c^T y = \eta$, which separates v from $\operatorname{conv}(\hat{\mathcal{A}})$. Define the set $\mathcal{A}' \coloneqq \operatorname{argmax} \{c^T y, y \in \mathcal{A} \setminus \hat{\mathcal{A}}\}$. Choose $u \in \mathcal{A}'$ and obtain $w \in \mathcal{A}'$ farthest from u. Add w to $\hat{\mathcal{A}}$ and remove it from \mathcal{A} . Repeat this process until \mathcal{A} is empty. $\hat{\mathcal{A}}$ will be an approximate set of extreme points of $\operatorname{conv}(\mathcal{A})$. Notice that in each step of this scheme, a CHMP needs to be solved, and we could apply the first-order methods mentioned above.

Acknowledgment

RF thanks CAPES for her doctoral scholarship. DSG thanks Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Grant n. 305213/2021-0

References

- P. Awasthi, B. Kalantari, and Y. Zhang. "Robust vertex enumeration for convex hulls in high dimensions". In: International Conference on Artificial Intelligence and Statistics. PMLR. 2018, pp. 1387–1396.
- [2] A. Blum, S. Har-Peled, and B. Raichel. "Sparse approximation via generating point sets". In: ACM Transactions on Algorithms 15.3 (2019), pp. 1–16.
- [3] E. J. Goodman and J. O'Rourke. Handbook of discrete and computational geometry. CRC, 1997.
- B Kalantari. "A Characterization Theorem and an Algorithm for a Convex Hull Problem". In: Annals of Operations Research 226.1 (2014), pp. 301–349.
- [5] P. Kumar and E. A. Yildirim. "Minimum-Volume Enclosing Ellipsoids and Core Sets". In: Journal of Optimization Theory and Applications 126.1 (2005), pp. 1–21.
- [6] S. Lacoste-Julien and M. Jaggi. "On the global linear convergence of Frank-Wolfe optimization variants". In: Proceedings of the 28th International Conference on Neural Information Processing Systems. Vol. 1. 2015, pp. 496–504.