Trabalho apresentado no XLI CNMAC, Unicamp - Campinas - SP, 2022.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics Preprint

Modelagem Fracionária da dinâmica da COVID-19

Micaeli Mendola Theodoro¹ Programa de Pós-graduação em Biometria, Unesp, Botucatu Thomas Nogueira Vilches² Agent-Based Modelling Laboratory - York University, Toronto, Ontario, Canada Rubens Figueiredo Camargo³ Departamento de Matemática, FC, Unesp, Bauru

Resumo. Este trabalho apresenta uma revisão de modelos matemáticos que tratam da dinâmica do espalhamento da COVID-19, além disso apresenta aspectos gerais da teoria do Cálculo de Ordem Não Inteira, tradicionalmente conhecido como *Cálculo Fracionário* (CF), incluindo métodos numéricos e estratégias computacionais de estimação de parâmetros. Desta forma, a presente dissertação propõe o modelo SAIRD (suscetíveis-assintomáticos-sintomáticos-recuperados-mortos). Neste modelo, a partir de medidas estatísticas, como erro quadrático médio (EQM), o coeficiente de correlação intraclasse (ICC) e o erro percentual absoluto médio (MAPE), avaliamos que as estratégias computacionais fracionárias se mostraram qualitativamente mais precisas que as clássicas.

Palavras-chave. COVID-19, Equações Diferenciais Ordinárias, Equações Diferenciais Fracionárias, Estimação de Parâmetros, Modelagem Fracionária, Modelagem Matemática.

1 Introdução

No final de dezembro de 2019, um surto de pneumonia caracterizado por febre, tosse seca, fadiga e problemas gastrointestinais ocasionais começou no mercado atacadista de frutos do mar de Huanan em Wuhan, Hubei, China, envolvendo cerca de 66% dos funcionários. No primeiro dia de 2020, o mercado foi fechado e, mesmo com o fechamento, milhares de pessoas em diferentes províncias chinesas, como Hubei, Zhejiang, Guangdong, Henan, foram infectadas. Cidades como Pequim e Xangai também foram afetadas e posteriormente as infecções, causadas por um vírus, atingiram outros países como Tailândia, Coreia do Sul, Vietnã, Alemanha, Estados Unidos e Cingapura [6]. O vírus foi identificado como um novo coronavírus que causa uma Síndrome Respiratória Aguda Grave (SARS) e foi nomeado como SARS-CoV-2, em referência ao SARS-CoV, que se espalhou entre 2002 e 2003 em todo o mundo [1, 6].

Em 11 de março de 2020, o chamado COVID-19 (*Coronavirus Disease 2019*), causado pelo SARS-CoV-2, foi considerado uma pandemia pela Organização Mundial da Saúde (OMS). Segundo dados da OMS, em 28 de novembro de 2021, o mundo contabiliza 261.075.046 casos e 5.195.138 óbitos pela doença em todo o mundo.

A pandemia do COVID-19 desestabilizou o mundo inteiro nas mais diversas instâncias, gerando uma crise na saúde pública, política, economia e saúde mental. Assim como no mundo, a situação no Brasil tem sido extremamente grave. O primeiro caso de COVID-19 foi detectado em 26 de fevereiro de 2020 e, desde então, contabilizamos 22.076.863 casos e 614.186 óbitos por COVID-19, segundo o Ministério da Saúde [4]

 $^{^{1}}$ micaeli.theodoro@unesp.br

²thomvilches@gmail.com

³rubens.camargo@unesp.br

2 Modelo clássico SAIRD

Dentro do contexto de doenças infecciosas, a modelagem matemática desempenha um papel de grande destaque seja no sentido de compreender a dinâmica celular ou espalhamento de uma doença na população. Mais especificamente no caso da COVID-19 vários matemáticos, epidemiologistas e pesquisadores do mundo todo se engajaram para utilizar dados reais, realizar ajustes das curvas, bem como realizar predições sobre o andamento da pandemia nas mais diversas localidades.

Nesse sentido um dos modelos utilizados na pandemia da COVID-19, antes do desenvolvimento das vacinas foi o modelo SAIRD, que consiste em dividir a população em cinco compartimentos.

Inicialmente, o indivíduo é suscetível à infecção: o vírus não está presente em seu corpo, quando o hospedeiro encontra um indivíduo no período infeccioso sintomático ou assintomático e se infecta. Durante esta fase inicial, o indivíduo não apresenta sinais óbvios de infecção, os indivíduos nesta fase são considerados na classe dos assintomáticos. Quando o hospedeiro passa apresentar sintomas da doença, ele passa para o compartimento infeccioso sintomático. Quando o sistema imunológico consegue se livrar do patógeno o hospedeiro entra para o compartimento dos recuperados, e caso o hospedeiro faleça em decorrência da doença ele entra para o compartimento dos mortos [5].

Figura 1: Esquema dos compartimentos do modelo SAIRD (suscetíveis-assintomáticossintomáticos-recuperados-mortos), onde inicialmente o indivíduo é suscetível, S, e ao entrar em contato com um infectado seja sintomático ou assintomático entra no compartimento A, caso o indivíduo nunca desenvolva sintomas da COVID-19 ele se recupera entrando no compartimento R, caso o indivíduo seja sintomático ele entra no compartimento I, no qual ele pode se recuperar entrando no compartimento R ou falecer em decorrência de complicações da doença, entrando no compartimento D.

Então podemos descrever a dinâmica populacional da COVID-19 por meio de um sistema de Equações Diferenciais Ordinárias (EDO) (1):

$$\begin{cases}
\frac{dS}{dt} = -r_1 S A - r_2 S I \\
\frac{dA}{dt} = r_1 S A + r_2 S I - a_1 A - c_1 A \\
\frac{dI}{dt} = c_1 A - a_2 I - c_2 I, \\
\frac{dR}{dt} = a_1 A + a_2 I, \\
\frac{dD}{dt} = c_2 I.
\end{cases}$$
(1)

Neste modelo, trabalhamos então com cinco compartimentos: Suscetíveis (S), Assintomáticos (A), Sintomáticos (I), Recuperados (R) e Mortos (D). Os parâmetros utilizados são descritos na tabela (1).

Parâmetro	Significado	Unidade
r_1	Taxa de infecção por assintomáticos	$dias^{-1}$
r_2	Taxa de infecção por sintomáticos	$dias^{-1}$
a_1	Taxa de recuperação de assintomáticos	$dias^{-1}$
a_2	Taxa de recuperação de sintomáticos	$dias^{-1}$
c_1	Taxa em que o assintomático se torna sintomático	$dias^{-1}$
c_2	Taxa em que o sintomático morre	$dias^{-1}$

Tabela 1: Parâmetros utilizados no modelo (1).

Portanto, os suscetíveis se contaminam por assintomáticos a uma taxa r_1 e se contaminam por sintomáticos a taxa r_2 , entrando para o compartimento A. Inicialmente todos os indivíduos infectados pertencem ao compartimento A, que podem se recuperar e não infectar mais pessoas a uma taxa a_1 , ou se tornarem sintomáticos, irem para o compartimento I a uma taxa c_1 . Os indivíduos sintomáticos, podem se recuperar a uma taxa a_2 , entrando para o compartimento R e falecerem em decorrência da COVID-19 a uma taxa c_2 adentrando no compartimento D.

Dentro dos conceitos de modelagem matemática as condições iniciais são parâmetros essenciais a serem determinados, desta forma a condição inicial de suscetíveis $S(0) = S_0$, pode ser menos do que a população total (N), já que dependendo da adesão às medidas de isolamento podemos ter $N > S_0$.

Podemos dizer que $\alpha_1 = a_1 + c_1$ é o inverso de τ_1 , o período médio de que o indivíduo passa no compartimento A. Temos $\alpha_2 = a_2 + c_2$ como o inverso de τ_2 , que é o tempo médio que o indivíduo permanece no compartimento I. Como estamos assumindo que os assintomáticos serão detectados ao ter sintomas, a taxa de letalidade é dada pelo total de mortes dividido pelo total de infectados $m = \frac{c_1}{\alpha_1} \frac{c_2}{\alpha_2}$ [2].

Considerando m = 0.029 e os períodos médios de incubação e de morte são, respectivamente, $\tau_1 = 5$ dias e $\tau_2 = 11$ dias [2]. Podemos afirmar que:

$$c_1 = \alpha_1 - a_1,$$

$$c_2 = m \frac{\alpha_1 \alpha_2}{c_1} = m \frac{\alpha_1 \alpha_2}{\alpha_1 - a_1},$$

$$a_2 = \alpha_2 - c_2 = \alpha_2 - m \frac{\alpha_1 \alpha_2}{\alpha_1 - a_1},$$

Desta forma, temos três parâmetros a serem estimados a_1 , $r_1 \in r_2$ com duas condições iniciais $S_0 \in A(0) = A_0$, transformando a EDO (1) em:

$$\begin{cases}
\frac{dS}{dt} = -r_1 S A - r_2 S I, \\
\frac{dA}{dt} = r_1 S A + r_2 S I - \alpha_1 A, \\
\frac{dI}{dt} = (\alpha_1 - a_1) A - \alpha_2 I, \\
\frac{dR}{dt} = a_1 A + (\alpha_2 - m \frac{\alpha_1 \alpha_2}{\alpha_1 - a_1}) I, \\
\frac{dD}{dt} = m \frac{\alpha_1 \alpha_2}{\alpha_1 - a_1} I.
\end{cases}$$
(2)

3 Modelo fracionário SAIRD

Para propormos a generalização fracionária para o modelo clássico SAIRD visto na seção 2, temos que ter o devido cuidado com o desbalanceamento das dimensões das unidades da equação diferencial. Quando introduzimos a derivada de ordem não inteira como o operador, $\frac{d^{\beta}}{dt^{\beta}}$, com $0 < \beta \leq 1$, que é a ordem não inteira, verificamos que a dimensão do operador fracionário é

3

 $\frac{1}{{\rm dias}^\beta}, ~~0<\beta\leq 1.$ Destacamos que, neste trabalho, utilizamos [], como notação para a unidade de medida.

Para manter a consistência com a dimensionalidade dos parâmetros, podemos introduzir um novo parâmetro τ , em que $[\tau]$ = dias, de modo que:

$$\left[\frac{1}{\tau^{1-\beta}}\frac{d^{\beta}}{dt^{\beta}}\right] = \frac{1}{\text{dias}} = \left(\frac{1}{\text{dias}}\right)^{1-\beta} \times \left(\frac{1}{\text{dias}}\right)^{\beta} = \frac{1}{\text{dias}}.$$
(3)

Na equação (3) se $\beta = 1$, retornamos ao modelo clássico sem perda de generalidade. Portanto, podemos realizar a generalização fracionária do modelo (1), ajustando dimensionalmente o operador fracionário acrescentando o parâmetro τ desta forma:

$$\frac{d}{dt} \to \frac{1}{\tau^{1-\beta}} \frac{d^{\beta}}{dt^{\beta}}, \quad 0 < \beta \le 1,$$
(4)

o parâmetro τ caracteriza desta forma a estrutura fracionária do operador fracionário.

Desta forma, podemos fazer o ajuste dimensional adicionando o τ na versão fracionária do modelo SAIRD da equação (1):

$$\frac{d^{\beta} S}{dt^{\beta}} = \tau^{1-\beta} (-r_1 S A - r_2 S I)$$

$$\frac{d^{\beta} A}{dt^{\beta}} = \tau^{1-\beta} (r_1 S A + r_2 S I - a_1 A - c_1 A),$$

$$\frac{d^{\beta} I}{dt^{\beta}} = \tau^{1-\beta} (c_1 A - a_2 I - c_2 I),$$

$$\frac{d^{\beta} R}{dt^{\beta}} = \tau^{1-\beta} (a_1 A + a_2 I),$$

$$\frac{d^{\beta} D}{dt^{\beta}} = \tau^{1-\beta} (c_2 I).$$
(5)

Quando analisamos o sistema de EDF (5), tanto o lado esquerdo quanto direito, de cada equação, apresentam a dimensão $\left(\frac{1}{\text{dias}}\right)^{\beta}$.

Agora aplicando as reformulações colocadas na seção (2), obtemos o seguinte sistema de EDF:

$$\frac{d^{\beta}S}{dt^{\beta}} = \tau^{1-\beta}(-r_{1}SA - r_{2}SI)$$

$$\frac{d^{\beta}A}{dt^{\beta}} = \tau^{1-\beta}(r_{1}SA + r_{2}SI - \alpha_{1}A),$$

$$\frac{d^{\beta}I}{dt^{\beta}} = \tau^{1-\beta}[(\alpha_{1} - a_{1})A - \alpha_{2}I],$$

$$\frac{d^{\beta}R}{dt^{\beta}} = \tau^{1-\beta}\left[a_{1}A + \left(\alpha_{2} - m\frac{\alpha_{1}\alpha_{2}}{\alpha_{1} - a_{1}}\right)I\right],$$

$$\frac{d^{\beta}D}{dt^{\beta}} = \tau^{1-\beta}\left(m\frac{\alpha_{1}\alpha_{2}}{\alpha_{1} - a_{1}}I\right).$$
(6)

Utilizamos então o modelo (6) como o nosso modelo principal da generalização fracionária do modelo SAIRD. Dentro das simulações computacionais deste modelo fracionária da pandemia da COVID-19 no Brasil, traçamos duas estratégias computacionais A e B, e dentro delas subdividimos em mais outras duas que estão descritas a seguir.

4 Estratégias computacionais no modelo fracionário

Utilizando o modelo (6) propomos aqui duas estratégias computacionais, A e B, que foram subdivididas em outras duas.

Na estratégia computacional A, vamos utilizar o sistema de equações diferenciais fracionárias (6), considerando $r_2 = 0$, ou seja, considerando que os indivíduos sintomáticos se isolam quando detectados, já na estratégia B consideramos $r_2 \neq 0$, desta forma a taxa de infecção por sintomático é um parâmetro a ser estimado. Dentro de cada estratégia computacional inserimos outras duas, uma variando a ordem da derivada fracionária até encontrar uma que produza um erro menor, e uma segunda estratégia, no qual, consideramos a ordem da derivada, β , como um dos parâmetros a ser estimado.

No modelo fracionário, assim como no clássico temos três parâmetros desconhecidos:

- *a*₁, taxa de recuperação de assintomáticos;
- r₁, taxa de infecção por meio de assintomáticos;
- r_2 , taxa de infecção por assintomáticos, exceto na estratégia A, onde $r_2 = 0$.

Além destes três parâmetros, temos duas condições iniciais a serem estimadas: $S_0 \in A_0 \in o$ parâmetro τ utilizado para manter a consistência dimensional na generalização fracionária.

Nos modelos fracionários usualmente a ordem da derivada, β , é um valor menor que a derivada inteira do modelo clássico, **i.e**, $0 < \beta \leq 1$, este valor pode ser estimado no próprio método de estimação, ou podemos variar β em tamanhos fixos h, por exemplo, $\beta = n - k.h > 0$, sendo n a ordem inteira do modelo (no nosso caso específico n = 1), $k \in \mathbb{N}$ e h o tamanho da variação que estamos pretendendo aplicar. Como podemos verificar no esquema da Figura 2 as estratégias utilizadas para realização do presente trabalho:

Figura 2: Esquema representando as estratégias computacionais utilizadas para as simulações do modelo fracionário (6)

Assim como no modelo clássico utilizamos a função lsqnonlin do MatLab para realizar a estimação do vetor de parâmetros ótimo em cada estratégia computacional. Neste método minimizamos o quadrado de uma função resíduo, f(p), que neste caso utilizamos o erro quadrático médio (EQM), com relação aos dados de casos e mortes acumuladas.

No caso das soluções do sistema de EDF (6) temos que utilizar os conhecimentos de métodos numéricos fracionários, em específico o método de Adams-Bashforth-Moulton generalizado fracpece.

A partir das simulações numéricas realizadas em cada estratégia computacional utilizando a base de dados de wesleycota é possível avaliar qualitativamente o quão acuradas as estratégias se mostraram por meio das medidas estatísticas ICC (Coeficiente de correlação intraclasse, do inglês *Intraclass correlation coefficient*) e o MAPE (Erro percentual absoluto médio, do inglês *Mean Absolute Percentage Error*).

5 Considerações finais

O presente trabalho buscou realizar, a partir de técnicas clássicas e com a utilização do Cálculo Fracionário, um estudo geral sobre os efeitos da pandemia da COVID-19 no Brasil e no mundo, bem como a origem e classificação biológica do vírus SARS-CoV-2 causador da doença. Desta forma, foi possível compreender o quão devastadora foi a pandemia nas mais diversas áreas: saúde pública, política, social e econômica. Assim, no mundo todo houve a necessidade de compreender a dinâmica de espalhamento da COVID-19.

Em vários sistemas, a modelagem fracionária tem desempenhado um papel fundamental. Neste trabalho tentamos embutir na ordem não inteira das derivadas, o efeito das simplificações do modelo.

A partir das simulações numéricas foi realizada uma análise por meio de uma comparação da ordem da derivada e o erro quadrático médio produzido entre a curva estimada e os dados disponíveis de casos acumulados e mortes acumuladas por COVID-19. Por meio de todas as simulações e comparações foi possível observar que no modelo fracionário as curvas estimadas se mostraram mais acuradas com relação aos dados disponíveis em wesleycota se observarmos as medidas estatísticas que utilizamos para a comparação: erro quadrático médio (EQM), coeficiente de correlação intraclasse (ICC) e o erro percentual absoluto médio (MAPE). Além disso, apesar de subdividirmos as estratégias computacionais entre fixar e estimar a ordem da derivada, não houve mudanças significativas nos EQM, ICC e MAPE obtidos entre as estratégias fracionárias, como podemos observar na Tabela 2.

Tabela 2: Estrategias computacionais classicas e fracionarias com seus respectivos valores de	e deri-
vada, erro quadrático médio (EQM), coeficiente de correlação intraclasse (ICC) e o erro perc	entual
absoluto médio (MAPE) tanto de casos quanto de mortes acumuladas.	

Estratégia	β	EQM	ICC _{casos}	ICC _{mortes}	MAPES _{casos}	MAPE _{mortes}
A	1	3.32×10^{8}	0.9942	0.9660	0.1418	0.1175
B	1	$4.25 imes 10^8$	0.9954	0.970	0.1652	0.1186
A_1	0.990	2.49×10^8	0.9975	0.9782	0.0986	0.0757
A_2	0.9872	2.32×10^8	0.9976	0.9785	0.0938	0.0746
B_1	0.994	$6.13 imes 10^7$	0.9990	0.9814	0.0345	0.0617
B_2	0.9912	$2.79 imes 10^8$	0.9973	0.9764	0.1064	0.0773

Dentre todas as simulações numéricas feitas nesse trabalho, tanto no modelo clássico quanto no fracionário, a simulação que obteve o menor erro quadrático médio e erro percentual absoluto médio e o coeficiente de correlação intraclasse mais próximo de 1, com relação os dados disponíveis em [3], foi na estratégia B_1 no modelo fracionário fixando $\beta = 0.994$.

Figura 3: Comparação entre os dados reais de casos e mortes acumuladas em decorrência da COVID-19 e a estimação feita pelos autores no modelo fracionário SAIRD, na estratégia B_1 , utilizando $\beta = 0.994$.

Agradecimentos

Agradeço à Coordenação de Aperfeiçoamento Pessoal de Nível Superior (CAPES) pelo apoio financeiro. Processo: 88887.482516/2020-00

Referências

- I. Chakraborty e P. Maity. "COVID-19 outbreak: Migration, effects on society, global environment and prevention". Em: Science of the Total Environment 728 (2020), pp. 1–7. URL: https://doi.org/10.1016/j.scitotenv.2020.138882.
- [2] L. Chicchi et al. "First results with a SEIRD model. Quantifying the population of asymptomatic individuals in Italy". Em: **Preprint** (2020).
- [3] Wesley Cota. "Monitoring the number of COVID-19 cases and deaths in Brazil at municipal and federative units level". Em: SciELOPreprints:362 (mai. de 2020). DOI: 10.1590/scielopreprints.362.
- [4] Ministério da Saúde. https://covid.saude.gov.br/. Acessado em 05/12/2021.
- P. Rohani e M. Keeling. Modeling Infectious Diseases in Humans and Animals. Vol. 1. Princeton, New Jersey: Princeton University Press, 2008.
- Y. C. Wu e Y. J. Chan. "The outbreak of COVID-19: An overview". Em: Journal of Chinese Medical Association 83 (2020), pp. 217–220. DOI: 10.1016/j.biopha.2020.110493.