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behavior
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Abstract. Electromechanical systems are composed by two interacting subsystems, a mechanical
and an electromagnetic. This paper discusses the oscillatory response of a linear electromechanical
system. The objective of the paper is to show that the oscillatory response of the chosen electrome-
chanical system is provoked by the mutual interaction between mechanical and an electromagnetic
subsystems, and to compare this oscillatory response with the response of purely mechanical sys-
tems. Natural frequencies and normal modes, are computed for the electromechanical system. The
computed parameters involve mechanical and electromagnetic variables, i.e., they are hybrid, a nov-
elty in the literature. Hybrid model coordinates and frequency responses graphs are also discussed.
Keywords. Electromechanical systems, natural frequencies, normal modes, resonance

1 Introduction

Electromechanical systems are an interesting type of dynamical systems. They are composed
by two interacting subsystems, a mechanical and an electromagnetic. To properly characterize
the dynamics of an electromechanical system, it is not su�cient to characterize the dynamics of
each subsystem independently, it is necessary to include in the mathematical model of the system
dynamics the mutual in�uence between the two subsystems [2, 5, 7].

The state of an electromechanical system involves mechanical and electromagnetic variables,
and this is re�ected in the initial value problem (IVP) that gives the system dynamics. The initial
value problem is composed by a set of di�erential equations and initial conditions with these two
types of variables, as for example, positions, velocities, angles, currents, and charges [4, 6]. In the
set, the mutual interaction between the mechanical and an electromagnetic subsystems does not
appear as a functional relation. The mutual interaction varies with the state of the subsystems
and, consequently, depends on initial conditions [1].

The dynamic behavior of an electromechanical system depends on this mutual interaction, i.e.,
phenomena present in the system response re�ects this interplay between the mechanical and elec-
tromagnetic subsystems. In this paper, the focus is in a special phenomenon: oscillations. A linear
electromechanical system composed by a DC motor connected to a rigid disc, a motor-disc system
is analyzed. This system has the minimum number of elements necessary to be classi�ed as an
electromechanical system. It is a bare minimum to study oscillatory response of electromechanical
systems and to make modal analysis. The choice to address the problem in this bare minimum
system was to highlight the e�ect of the mutual interaction between the mechanical and electro-
magnetic subsystems in the oscillatory response. Besides, the system was chosen as simple as
possible so that the analyses could be done analytically. Natural frequencies and normal modes
are computed. Di�erently from purely mechanical systems [3, 9], here these parameters involve
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mechanical and electromagnetic variables, i.e., the computed natural frequencies and normal modes
are hybrid, a novelty in the literature.

1.1 Electromechanical natural frequencies

The hybrid natural frequencies are the frequencies at which the electromechanical system re-
sponds when there is no external excitation acting over it, that is, when the system is free. In
our case, this means no external torque acting over the disc or no external source voltage applied
over the electric circuit of the DC motor. In this situation, the hybrid natural frequencies also
represents the frequencies at which occurs the interplay of energies between the mechanical and
the electromagnetic subsystems.

1.2 Electromechanical normal modes

The dynamics of an electromechanical system is usually parametrized with purely mechanical
and an electromagnetic variables, as positions, velocities, angles, currents, and charges. Since these
variables are native and intrinsic to the problem, they are the most natural variables to parametrize
the system dynamics. With such kind of variables, the set of di�erential equations present in the
IVP that characterizes the dynamics of an electromechanical system is a coupled set of equations.
This means that the equations of the set can not be solved independently.

The choice to parametrize the dynamics with native and intrinsic variables, easier to understand
and visualize, generates a coupled set of equations in the IVP. However, if the dynamics were
parametrized with a special set of variables, obtained from the hybrid normal modes and called
modal coordinates, the set of equations would become uncoupled. The hybrid normal modes forms
a basis of a vector space that can be used to represent the system dynamics.

Writing the system dynamics in terms of the modal coordinates turns possible to compute the
system response for external excitations. For the system analyzed in this paper, the focus is on the
computation of the response for harmonic external excitations and graphs of frequency response.
Since the motor-disc system is linear and conservative, when it is excited harmonically with fre-
quency equal to the natural frequency of the system, resonance appears, i.e., an electromechanical
resonance, another novelty of the paper.

This paper is organized as follows. Section 2 presents the dynamics of the motor-disc, i.e.,
the initial value problem (IVP), that describes the dynamics of the analyzed electromechanical
system. The homogeneous solution of the IVP, i.e., the system response when there is no external
excitation acting over it is computed in Sect. 3. In this section the hybrid natural frequencies
and normal modes are also computed. The decoupling of the equations of the IVP that gives the
system dynamics using modal coordinates is made in Sec. 4. In Sec. 5, it is presented the system
response for harmonic external excitations and the resonance is discussed.

2 Dynamics of the electromechanical system

The electromechanical system analyzed in this paper is a DC motor connected to a disc as
shown in Figure 1. The initial value problem to the system is given in Equation (1) [8]. Find
(α, z) such that, for all t > 0,

lz̈(t) + r ż(t) + keα̇(t) = ν(t) ,
jmα̈(t) + bmα̇(t)− keż(t) = τ(t) ,

(1)

with the initial conditions α̇(0) = θ0, α(0) = α0, ż(0) = c0 and z(0) = z0. In these equations, t is
the time, ν is the source voltage, z is the electric charge, α̇ is the angular speed of the disc, l is the
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Figure 1: Electromechanical system.

electric inductance, jm is the disc moment of inertia, bm is the damping ratio in the transmission
of the torque generated by the motor, ke is the motor electromagnetic force constant, r is the
electrical resistance, and τ is an external torque made over the disc.

The system state is given by four variables, two of them mechanical (angular velocity and
position of the disc) and two of them electromagnetic (charge and current in the motor). These four
variables are native and intrinsic to the problem, natural variables to parametrize the system state.
The system dynamics, parametrized with these four variables, is given by an initial value problem
comprising a set of two coupled di�erential equations. The coupling between the mechanical
and electromagnetic subsystems is not given by a functional relation. It depends on the system
state and, consequently, depends on initial conditions. Writing Equation (1) in matrix form, and
assuming bm = 0 and r = 0 to get a conservative system, it is obtained:[

l 0
0 jm

] [
z̈(t)
α̈(t)

]
+

[
0 ke

−ke 0

] [
ż(t)
α̇(t)

]
=

[
ν(t)
τ(t)

]
, (2)

MŸ(t) +GẎ(t) = F(t) , (3)

where M and G can be called as inertia and gyroscopic matrices respectively and Y =

[
z
α

]
. The

initial conditions become Ẏ(0) =

[
c0
θ0

]
and Y(0) =

[
z0
α0

]
. Making α̇ = θ and ż = c, where θ

represents the angular velocity of the disc and c represents the current in the electric circuit of the
DC motor, it is possible to rewrite Equation (2) as a system of �rst order di�erential equations
given by

MẊ(t) +GX(t) = F(t) , (4)

where X = Ẏ =

[
c
θ

]
. The initial conditions are given by X(0) =

[
c0
θ0

]
. Since l and jm are

considered to be non-zero, Equation (4) can be rewritten as

Ẋ(t) = −M−1 GX(t) +M−1 F(t) = Ẋ(t) = AX(t) +D(t) , (5)

where A = −M−1G and D(t) = M−1F(t) =

[
ν(t)/l
τ(t)/jm

]
. The solution of Equation (5) is

X(t) = Xh(t) +Xp(t), where Xh is the general solution of the associated homogeneous equation

(Ẋh = AXh) and Xp is a particular solution of the non-homogeneous equation.

3 Homogeneous solution

It is proposed as solution to the associated homogeneous equation Xh = U eλ t, where U is
a non-zero constant vector and λ a scalar. Substituting the proposed general solution into the
the associated homogeneous equation, it is obtained (A − λ I)U = 0, which forms an eigenvalue
problem.
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3.1 Natural frequency and normal modes of the electromechanical sys-

tem

Since U ̸= 0, the matrix (A− λ I) is singular. Thus:

det
(
A− λ I

)
= 0 ⇒ λ2 +

k2e
l jm

= 0 ⇒ λ1,2 = ± ke√
l jm

i , (6)

where i =
√
−1. Substituting the two eigenvalues λ1,2 into the eigenvalue problem, it is possible

to write (A− λ1 I)U1 = 0 and (A− λ1 I)U2 = 0. For λ1 =
ke√
l jm

i, the associated eigenvector is

U1 =

[
i jm/

√
l jm

1

]
. For λ2 = − ke√

l jm
i, the associated eigenvector is U2 =

[
−i jm/

√
l jm

1

]
.

The eigenvalues λ1,2 give a natural frequency of the system ωn =
ke√
l jm

. The eigenvectors U1

and U2 are normal modes. Observe that the natural frequency, ωn, and the normal modes are
hybrid. They involve mechanical and electromagnetic parameters. Since two pairs of eigenvalues
and eigenvectors were found, the general solution of the associated homogeneous equation should
be a linear combination of the two found solutions:

Xh(t) = a eλ1 t U1 + b eλ2 t U2 =

 cos

(
ke√
l jm

t

)
jm√
l jm

h− sin

(
ke√
l jm

t

)
jm√
l jm

d

cos

(
ke√
l jm

t

)
d+ sin

(
ke√
l jm

t

)
h

 , (7)

where a and b are constants, d = a+ b and h = i(a− b).

4 Decoupling the IVP that gives the system dynamics using

the normal modes

With the eigenvalues and eigenvectors, spectral and modal matrices can be writing as:

Λ =

[
λ1 0
0 λ2

]
=


ke√
l jm

i 0

0 − ke√
l jm

i

 , P =
[
U1 U2

]
=

[
ijm/

√
l jm −ijm/

√
l jm

1 1

]
.

(8)

It is possible to compute: P−1 =
1

2 i jm/
√
l jm

[
1 ijm/

√
l jm

−1 ijm/
√
l jm

]
. The matrix A can be

written as A = P ΛP−1. Since the focus of the paper is the computation of the response for
harmonic external excitations, the source voltage ν is considered to be ν0 cos (ω t) or ν0 sin (ω t), and
external torque τ of the form τ0 cos (ω t) or τ0 sin (ω t). Here, ν0 and τ0 represents the amplitudes
of the external excitations and ω their frequencies. Calling by X1 and X2 the system states when
the system is forced with the functions sine and cosine respectively, it possible to write:

Ẋ1(t) = AX1(t) +D1(t) = AX1(t) +

[
ν0/l
τ0/jm

]
cos (ω t), (9)

Ẋ2(t) = AX2(t) +D2(t) = AX2(t) +

[
ν0/l
τ0/jm

]
sin (ω t). (10)

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 9, n. 1, 2022.

DOI: 10.5540/03.2022.009.01.0273 010273-4 © 2022 SBMAC

http://dx.doi.org/10.5540/03.2022.009.01.0273


5

Multiplying Equation (10) by the complex i and adding it to Equation (9) it is obtained:

Ṡ(t) = AS(t) +B(t) = AS(t) +

[
ν0/l
τ0/jm

]
ei ω t , (11)

where S = X1 + iX2. Creating a new variable S = P Q, called modal variable, Equation (11) can
be rewritten as

P Q̇(t) = AP Q(t) + B(t) ,

P−1 P Q̇(t) = P−1 AP Q(t) + P−1 B(t) ,

Q̇(t) = ΛQ(t) + P−1 B(t) ,

(12)

Thus, parametrizing the state of the electromechanical system with Q, a modal variable with
components q1 and q2, the equations that give the system dynamics become uncoupled and can be
solved independently. They are:

q̇1(t)−
ike√
l jm

q1(t) =
1

2 i jm√
l jm

(
ν0
l
+

i jm√
l jm

τ0
jm

)
ei ω t ,

q̇2(t) +
ike√
l jm

q2(t) =
1

2 i jm√
l jm

(
−ν0

l
+

i jm√
l jm

τ0
jm

)
ei ω t .

(13)

5 Particular solution in terms of the modal coordinates

In this section of the paper, the particular solutions of each equation of Equation (13) is
computed. These solutions are computed for two di�erent cases. The �rst the case is when the
system is harmonically excited at a frequency di�erent from the natural frequency, ωn. The second
case is when it is excited at a frequency equal to ωn.

5.1 External excitation at frequency di�erent from the natural frequency

of the system

Considering that ω ̸= ke√
l jm

, it is proposed as particular solution to the �rst di�erential of Equa-

tion (13) the expression q1p(t) = X01 e
i(ω t+θ1), where X01 and θ1 are constants to be determined.

They represent, respectively, the amplitude of the proposed particular solution and the angular
phase between the excitation and the particular solution. Substituting the proposed particular
solution into the �rst equation of Equation (13) and, analyzing the modulus and phase of the
complex terms of the obtained expression, it is possible to compute X01 and θ1 as:

X01 =

∣∣∣∣∣12
√(

ν20
l jm

+
τ20
j2m

)∣∣∣∣∣∣∣∣∣ω − ke√
l jm

∣∣∣∣ , θ1 =


arctan

(
−ν0√
l jm

jm
τ0

)
− 3π

2
, if ω <

ke√
l jm

,

arctan

(
−ν0√
l jm

jm
τ0

)
− π

2
, if ω >

ke√
l jm

.

(14)

To second equation of Equation (13), it is proposed as particular solution the expression q2p(t) =
X02 e

i(ω t+θ2), where X02 and θ2 are constants to be determined. They represent, respectively, the
amplitude of the proposed particular solution and the angular phase between the excitation and
the particular solution. Substituting the proposed particular solution into the second equation
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of Equation (13), and analyzing the modulus and phase of the complex terms of the obtained
expression, X02 and θ2 are computed:

X02 =

∣∣∣∣∣12
√(

ν20
l jm

+
τ20
j2m

)∣∣∣∣∣∣∣∣∣ω +
ke√
l jm

∣∣∣∣ , θ2 = arctan

(
ν0√
l jm

jm
τ0

)
− π

2
. (15)

Figures 2(a) and 2(b) show the frequency responses and phase graphs for the particular solutions
of equations given in Equations (13). To plot the graphs, it was considered the following values
to the system parameters: l = 1.880 × 10−4 H, jm = 1.210 × 10−4 kg m2, ν0 = 1.000 V, ke =
5.330 × 10−2 V/(rad/s) and τ0 = 1.000 Nm. The motor parameters were obtained from the
speci�cations of the motor Maxon DC brushless number 411678.

(a) (b)

Figure 2: (a) Frequency response graphs and (b) phase graphs for the particular solutions of Equa-

tions (13).

5.2 External excitation at frequency equal to the natural frequency of

the system

Considering that ω = ωn = ke√
l jm

, resonance occurs for the �rst equation of Equation (13).

Thus, the particular solution of this equation is not periodic and its amplitude grows linearly over
time. This particular solution can be written as q1pr(t) = X01r t e

i(ω t+θ1r), where X01r and θ1r are
constants to be determined. Substituting it into the �rst equation of Equation (13) and analyzing
the modulus and phase of the complex terms of the obtained expression, it is possible to compute
X01r and θ1r:

X01r =
1

2

√(
ν20
l jm

+
τ20
j2m

)
, θ1r = arctan

(
−ν0√
l jm

jm
τ0

)
. (16)

For the second equation of Equation (13), the proposed particular solution is q2pr(t) = X02r e
i(ω t+θ2r),

where X02r and θ2r are constants to be determined. Substituting it into the second equation of
Equation (13) and analyzing the modulus and phase of the complex terms obtained, it is possible
to write:

X02r =

∣∣∣∣∣12
√(

ν20
l jm

+
τ20
j2m

)∣∣∣∣∣∣∣∣∣ω +
ke√
l jm

∣∣∣∣ , θ2r = arctan

(
ν0√
l jm

jm
τ0

)
− π

2
. (17)
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6 Conclusions

In this paper, the oscillatory response of a simple and linear electromechanical system was
analyzed. It was shown that the oscillatory response of the chosen electromechanical system
is provoked by the mutual interaction between mechanical and an electromagnetic subsystems.
Natural frequencies and normal modes, were computed. Since they involve mechanical and elec-
tromagnetic variables, they are hybrid. The hybrid natural frequency is the frequency at which
occurs the interplay of energies between the mechanical and the electromagnetic subsystems. The
hybrid normal modes forms a basis of a vector space that can be used to represent and decouple
the system dynamics.
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