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Abstract. In this work we use mixed formulations, based on the Raviart-Thomas (RTH) methods,
considering the weak flow form between the elements of the finite element mesh. The thermal
problem analyzed is an elliptical nonlinear problem. We propose a analysis, of model, considering
the two elliptic coupled equations, in the mixed form and show numerical results which confirm
optimal convergence rates for the flows in H(div; Q) and scalar variables in L?(€).
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1 Introduction

We considered the following termally coupled nonlinear elliptic problem

—div(u(6)Vu) = f, in Q (1a)
—div(V6) = p()|Vul?, in Q (1b)
u =0, on 92 (1c)
6 =0, on 002 (1d)

where 0 < p; < p(f) < po is eletrical condutibility, 6 : Q@ — R is temperature and v : @ — R
eletrical potential. The open set (2 C IRP, p = 2, 3.

This problem was trated in [3, 6], where the domain Q was supposed regular set, in the same
sense as the definition in [4]. From this, the authors establish the existence, uniqueness and
regularity of the solution, whith charge source f satisfying CHf||%2(Q) < 1, where C is a constant.
We make the following hypothesis

ol <T, (2)

where o = p(0)Vu and T' = T'(uq, o, 2, f) is a constant. It is hypothesis (2) simplifies mathema-
tical analysis, so we focus on the numerical analysis of the discontinuous Galerkin method of the
problem. Another hypothesis about regularity of function pu = u(s), s € R, whatever of Lipchitz,
this is, there is a constant L > 0, such that

la(61) — a(02)] < L||01 — 02| L2(0)s or |4l Loo() < L (3)
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2 Mixed Problem

We consider the following problem in the mixed form, that regard fluxes o = pu(0)Vu and
q = V0. Find o,u, q, 0, satisfying

a(@)o =Vu in Q (4a)
—dive = f in Q (4b)
g=V0in Q (4c)
—div(q) = a(8)|e|?, in Q (4d)
u=0and 6 =0 on 09, (4e)

where a(0) = u~1() it’s called electrical resistance, that is the inverse the electrical conductibility.
Considering the funcional spaces U = H(div;Q) = {r € (L*(Q))Y : V.r € L?(Q)} and
V = L%(2), we have the variacional form: find (o, u) and (q,6) € U x V that satisfy

(a(@)o,T)— (divr,u) =0,VT €U (5a)

—(dive,v) = (f,v), Vv € V (5b)

(g,7) — (divr,0) =0,VT €U (5¢)

—(divg,v) = (a(0)]e|*,v), Vv € VN L¥(Q) (5d)

In (5d) there is a asymmetry in funcitons spaces, mamely a(f)|o|? € L*(Q) it makes v € L*°(f2),
on the order hand, employing (2) and regularity |o||12(q) < Cal| f| L2(q), for Diriclet problem (5b),

we have
[(a®)|o*,v)| < pitllolle@llolrz@) vl <
p O f Iz ol L2 )y Yo € L*(9) (6)
where C' = C(Q, u1, o) is the constant, that depend of the domain. The inequality (6) show that
the inner products in (5d) is equivalent the symmetrical form

(divg,v) = (a(8)|a|?,v), Vv € L*(Q). (7)

Given 0, it is easy to see that (a(0)T,7T) > £||7'||2U7 VT € U. Moreover, the LBB conditions

holdis: there exists a constant 3 > 0 such that inf,cv sup g7 (V.7,v) > B[|7|g7|lv]|v Hence, we
have existence of solutions for (5a)-(5b) and (5¢)-(5d), and still

Il + llullv < Clifllv (8)

lglly + 19llv < CT(|f]lv (9)

The existence and uniqueness of solution to problem (5a)-(5b) and (5¢)-(5d) is establish in [1]
The results about the regularity of the solutions and the convergence of the fixed-point algorithm

for the problem (10) , were demonstrated in the work [3].

Point fixed algorithm

we consider the problem in the e-nth iteration Find (u™,0") € H(Q2) x H}(Q), such that

(0" HVu", Vo) = (f,v), Yv e H(Q) (10a)
(VO", V) = (0" 1)[Vul?,m), 1€ Hy(Q) (10b)
Theorem 2.1. There is convergence to solve the problem (10) for iteration over n, and
o — o2 + IV (u—u™)lL2 ) < Clfll2@M (£ HIVO = 0°)] 2, (11)
lg = a" |20 + V(0 = 0")[z2(@) < M(F)"IV(0 = 0°)l|L2(0), (12)

where M(f) = C||fllz2) < 1.
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3 Hybridized Mixed Method (RTH)

In this section we will demonstrate error estimates for the approximations of the coupled pro-
blem via the Raviart -Thomas method [5], in the norms H (div; Q) and L?(2) for the flow and
the scalar variables, respectively. For this, we continue to consider €2, a polyhedral domain and
00 p = 0N, where is the partition of €2 into elements denoted by T, satisfying the typical conditions
for finite elements [2].

3.1 Raviart-Thomas Spaces

Sendo hp o didmetro de T'; denotamos h = maxye7;, hr; €, 0 conjunto das faces (ou lados)
indicados por E e 0T € 07y, isto é, o contorno do elemeto T' pertencente ao conjunto de todos os
contornos em 7j, e finalmente v o vetor normal a 9f2.

We consider the Hilbert spaces in the discretized domain 7; with the set of edges 07},

L*(Tw) :=={v:vy € L*(T),V € Ta}, L*(0Ts) :={v:v, € L*(9T), VT € Ta}, (13)
if u,v € L*(Ty) the inner products are (u,v), := [puvdr, and (u,v); = Y5 (u,v)p, and if
A,;m € L*(9T,) the inner products are (A, m)yp := [, Amds, and (\,m), = > (A, m)ar,

whith the norms [[v|[z2(7;,) = /(v,v)7,, |vlL2a7) = 1/(v;Vn)s7, respectively. The Raviart-
Thomas space of order k is denoted RTy(T) := Px(T) & . Pr(T).
We defined the follows approximations spaces :

= {7 € (LAY : Th|r € RTL(T), VT € Tr,} ; (14a)

Vi = {vn € L2(Q) : va|r € Pu(T), VT € Tr}; (14b)

My, :={my, € L*(&,) : m|g € Pe(E),m|lp =0, EC 90, VE € &} (14c)
Wy, =3, X V), X My,. (14d)

The hybridized mixed Raviart-Thomas appoximation for the coupled problem in the form of
the iterative algorithm is : get 69 = 6°, for n = 1,2,..., find (o, u?, \) and (g7, 07, v,) € Wh,

such that:
(a(@Zﬁl)a}i,Th)Th = (up,divry) 7, + (Mp, Th Vo1, =0, V7, € Xy (15a)
(diVO’Z,Uh)Th = (f, Uh)Tha Yo € Vp (15b)
(orv,mp)or, =0, Vmpy € My, (15¢)
(gr,7mh)T — (Oh,divre) T, + (yn, ThV)oT, =0, YT, € Iy (16a)
(divagy,vp) 7, = (a(@ﬁfl)\aﬁ\g,vh)n, Yop € Vy (16b)
(qn-v,mp)or, =0, Vmy € My, (16¢)

Consedering that equations (15¢) and (16¢) are satisfied, restrict the analysis to mixed problems:

(a(@Zﬁl)aZ,Th)T} — (up,divry), =0, V1, € Ky, (17a)

(divaﬁ,vh)Th = (f, Uh)Th,a Yo, €V (17b)
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(q;leTh)Th - (Gz,diVTh)Th =0, VT, e Ky (18&)
(divagy,vn)T, = (G(QZA)\O’ZP,%)T}L , Yo €V (18b)

where each approximate problem satisfies the discrete versions of K h-coercivity and LBB analogous
to the continuous case, since for the approximation spaces defined in (14a) and (14b) it is guaranteed
that You, € Vi, 37, € 3p schu that divr, = v, and vice versa, that is, there is a compatibility
between the spaces X, and Vj,, where

Kh = {Ch S ’Ch; b(nh,vh) = (diVCh,’Uh)Th = O, Vvh c Vh}, with Sh € {O'Z,qZ}. (19)
where we define Kp, = {¢), € By, : Y [ [sa]mn =0, Vmy My}, [64] is the jump of ¢ in E.
Hence [¢1] = 0, therefore ¢;, € H(div,2) whith g5, € {o}, g} So we look for ¢, in 3, N H (div, ).
3.1.1 Error Estimates

Let’s assume this convergence of iterative scheme, follow the numerical analysis based on this
hypothesis. We presente below estimates for the coupled problem. For all 7, € Ky, and v, € Vp,
lo" = ohll g divay T 1" —upli@) <C (HU" = Thllg(divigy T 1" — Uh||L2(Q)> + (20)

Clofsoll0™ — 05 20

where C' = C(Q, a1, a2, L), being L Lipchitz constant.
la" = a3l divey + 10" = O3l 2@ < C (" = Thllydiviay + 10" = vnllzze ) +

C (a0 2e™ —a(@; =) 2oh )l + llo" ool (a(6 1) 2™ — a(ﬂﬁ_l)l/zdﬁ)ll} - (21

where C' = C(a1, Q).
The exact solution o™ satisfies (17a), because of iteration consistency in n, that is

(a(@”_l)a",ﬂ'h) — (u",divry)7;, =0, V7, € Kp. (22)

Th
making the difference between (17a) and (22), we have
(a(0"1)o™ —a(0) Hon", Th)

7 (u” — uz,div‘l’h)Th =0, V1, €. (23)

Adding and subtracting the term a(#;')o™ in the first term of (23), we obtain

(") (o™ = o), Th) . — (W' —up,divry) g, = (a(6; ™) —a(@* o™, 74)
for all V1, € ICp,.

by the consistency of (17b) and subtracting from the approximate problem, we get,
(dive™ — divoy, Uh)Th =0, Yo € V. (25)

From (24) and (25), we get (20). The estimate (21), is shown in more detail below. Following,
Brezzi’s theorem applied to this problem requires

(1) (Th, Ta)r2@) = Tl H(div0), V1 € Ky (26)
(2) sup (uh,diV’Th)

> Bllunllz2), Yuy, € Vy (27)
ek, ITnllE@ive)
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with Ky, = {1, € Ky, (divTp,va)r2() = 0, Vor € Vi }. As consequences of space compatibility,
that is, div/iCy, = V), and, therefore, for all u}} € Vp, there is 7, € IC, tal que divT, = Vp,, with

1 Trll £ (divio) < Cllu"||lL2 (). (28)

It is g, € Ky, and 0, € V), solutions of following problem

(@ 7)1 — (O, divry) 7, =0, V74 € Ky (29a)
(div@y, vn)7, = (a(0" ")|o™*,vn) 7., Yon € Vi (29D)
Subtracting (29) from (5c) and (5d) respectively, we get
(" — Gy, 1h) 7, — (0 — 0y, divry) 7, =0, V15, € Ky, (30a)
(divg™ — div@y,vn) T, =0, Vo € V. (30b)

consequently
g™ — @l aaive) + 10" — Ol 2@) < C (14" — @l mcaivo) + 18" = 0l L2 (31)
for all gy € Ky, V € éﬁ € V. From the consistency of the approximation (18), we have
(@" — gy, Th)7, — (0 — Oh,divry) 7, =0, V7, € Ky, (32a)

(divg™ — divgy,vp) 7, = (a(0" 1) |a"* — a(0) )|}, vh), You € Vi (32b)
From (30) and (32), results

(@ —aqr, )T, (0 — Op,divry)7, =0, Vi, € Ky (33a)
(divg™ — divq},vp) 7, = (a(@™ )|a" | — a(9271)|02\2,vh), Vo € V. (33b)
Choosing T, = @y — q} e v, = 0} — 6, in (33)

a5 — ail|Z20) = (a(0" o™ — a(@~H)loh1?,0n — 07) 12 () (34)

choosing 75, = T}, such that divr = 52 — 6, and

171 1 (aisr) = ClNOR = O3] 22 (35)
n (31), results ~ 3 3
167 — 6311 20) = (O — O, Tn) < Clldy — an 6 — 04| (36)
therefore R R
105 = O llL20) = (Oh — 0n,Tn) < Cll@y — g3 (37)
Choosing v;, = div(q), — ¢}}) in (32), we have
Idiv(@y, — @) 122 () = (a(@"~H|e"[* — a0y~ ")loh]?, div(d; — ai)) (38)
Consedering
n—1 n|2 n—1 2 _
a(0")[o" 2 — a6}V o7 |2 = )

—(a(@"_1)1/20' (9” 1)1/2 ) +2a(9n 1)1/2 ( (071—1)1/20.11_a(02*1)1/202)

of (34), we have
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6
1d5 — anliz) = — (@(@" ) 20" — a6y~ 1) 20} 2, 07 — 07)+
(2a(0" 1) 20 (a(0" 1) 20 — a(0y ") 20y), 07 — 0F) (40)
that is . L1/ 1
18— a5l132 ) < {Cill(@(0™) o™ — a0~ ) o)1+ "
Collo"|oo lI(a(0™1) 20" —a(@; =)o)} 105 — 07
combining with (35), results in
H qh||L2(Q
42
(6™ 2 — alOp Y g + o ol (a0 ) o — ol e (P
From (40) and (39)
Idiv(a; — a)lzzqon )
< Cll(a(0™ ) 2e™ — a(0y ™) 20l + lo™ ol (a0 2o™ — a0 ~1) 2op)]]
Combining (37), (42) and (43), we get
d@h — @l (dgivio) + 167 — Onllr2(0) < (44)
C [ll(a(@™ ) 20™ —a(@r =) 2ol + llo" (ol (a(6" 1) 2™ — a(6; ™) 2ap) ]
finally, by the triangle inequality, we get
la" — qpllz(dgivio) + 10" = O3l L2(0) < (45)

Clli(a(@m=1) 2™ — a0~ )2a})? | + " sl (a6 1) 2a™ — a(0r =) 2a})] ]

which demonstrates the inequality (21).

3.2 Numerical Results

We show the numerical results obtained by solving the coupled
problem (46)[3], by the proposed hybridized finite element method,
in the Raviart-Thomas space PrRTk. Convergence studies were
performed solving the problem in five triangular uniform meshs
(3.2), consecutively refined, decreasing h. In each mesh, iterations
were performed until reaching a tolerance,what is, topping criterion
used tol < 10? , where tol = ||u"+1 - UZ”Lz(Q) + HQZ—H - 92”[/2(9)
We calculate and analyze errors in following norms [|u™ —u}| z2(q),
le" —ohlliz ) e llo" = ol Hidivie)-

14 (rp(@)2s) =0rg<r<nr

L 0y — (g)| 2y < <1y (46) Figure 1: Discretized annular
u(rg) =0, u(ry) = us, Domain

0(ro) = 0(r1) = 0

where the exact solutions are:
0(e.y) = —In [1 = Ju(r) (u(r) —w)]
2In(X
u(z,y) = suy + 31/8 +ud tan {arctan (\/gjﬂﬂ) ( 1n((i0)) — 1)} (47)
1 0

with u3 = 1, r0 = 1 and r; = 2 e angle 7/4. Tables (1) and (2) show the optimal convergence
order for scalar and vector variables for each refined h. The errors in norms L?(2) and H(div, )
are calculated with respect to the exact solution (47).
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Table 1: Convergence order; potential error u and fluxes . RTH methods of degree k = 1.

h |lu" —upllL2) order [|o" —ojllr2 order |[[0" — on" | (i) order
0.7071E+00 0.50545E+4-00  0.00 0.45186E+00 0.00 0.19649E+-02 0.00
0.3536E+00 0.78993E-01 2.68  0.11230E+00  2.01  0.31110E+401 2.66
0.1768E-+00 0.39040E-01 1.02 0.24839E-01 2.18 0.15424E+-01 1.01
0.8839E-01 0.99043E-02 1.98  0.61868E-02 201  0.39184E+00 1.98
0.4419E-01 0.24854E-02 1.99 0.15451E-02 2.00 0.98353E-01 1.99

Table 2: Convergence order; temperature error § and fluxes g. RTH methods of degree k = 1.

h 10" — OpllL2) order |lg" — qpllz2() order [|¢" — qillH(aiv..0) order
0.7071E+00 0.50545E4-00  0.00 0.45186E-+00 0.00 0.19649E+02 0.00
0.3536E+00 0.78993E-01 2.68 0.11230E+00 2.01 0.31110E+-01 2.66
0.1768E+00 0.39040E-01 1.02 0.24839E-01 2.18 0.15424E4-01 1.01
0.8839E-01 0.99043E-02 1.98  0.61868E-02 2.01  0.39184E+00 1.98
0.4419E-01 0.24854E-02 1.99 0.15451E-02 2.00 0.98353E-01 1.99

4 Final Considerations

The hypothesis made in the hybridization of the discrete form provided the numerical analy-
sis of the mixed form concise and intelligible, arriving at the error estimates without extensive
mathematical complications.

Computational experiments, using the RTH method with degree k=1, confirm the rates of
optimal convergence k + 1 for the flows in H(div;2) and for temperature in L?((2).
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