Quotient space of intervals

Gino Gustavo Maqui Huamán ${ }^{1}$
Institute of Exact and Natural Sciences, Federal University of Pará, Brazil
Ulcilea Alves Severino Leal ${ }^{2}$
Federal University of Triângulo Mineiro, Brazil

Abstract

This article studies the quotient space of intervals, for this is defined an equivalence relation considering a symmetric difference, is obtained the quotient space of intervals where is defined a specific representative of the equivalence class, and an appropriated norm and metric is defined to proof that this space is a complete metric space.

Keywords. Interval space, linear space of intervals, quotient space of intervals.

1 Introduction

From interval analysis it is well known that the space of intervals provided with the standard sum and the product of a scalar forms a quasi-vector space [1, 7]. This is because, for example, an interval does not have inverse element and therefore subtraction does not have many useful properties (see $[2,8]$). But if we define a specific equivalence relation we can establish an equivalence class in such a way that it is possible to construct a quotient space of intervals $[5,9]$, in order to develop an interval mathematical analysis.

Radström's embedding theorem [6] tells us that there is an isometric mapping $\pi: \mathbb{I} \rightarrow \mathcal{B}$, where \mathcal{B} is a real normed linear space (space of equivalence classes), and \mathbb{I} is the family of all bounded closed intervals [6]. Taking a norm to induce a metric we can prove that this is a complete metric space.

The paper is organized as follows. Section 2 introduces the an equivalence relation to determine the equivalence class, then a specific representative is defined and then is defined the quotient space, and in Section 3 we present the conclusion.

2 The quotient space of intervals

Let \mathbb{I} is the family of all bounded closed intervals, on this space it is well known that the addition is associative, commutative and its neutral element is $\{0\}$. For $\lambda=-1$, scalar multiplication gives the opposite $-A=(-1) A=\{-a: a \in A\}$ but, in general, $A+(-) A \neq\{0\}$, that is, the space \mathbb{I} is not a linear space.

This fact is a crucial point due the necessity of working on a linear space in order to define in a suitable sense the derivative of interval valued functions. Taking into account this problem, we will introduce a natural equivalence relation between elements of \mathbb{I} which can be used to divide \mathbb{I} into equivalence classes having group properties for the addition operation. Building a vector space over the elements of \mathbb{I} is important, as this will allow us to define important limits such as

[^0]derivative and integral, in such a way that they have important properties such as the linearity of the derivative, a property that we do not have when we talk about $g H$-derivative for example [3].

Given $A=[\underline{a}, \bar{a}] \in \mathbb{I}$, the interval A is called symmetric if $\underline{a}=-\bar{a}$ and the class of symmetric intervals of \mathbb{I} will be denoted by \mathcal{S}. Given $A, B \in \mathbb{I}$, where $A=[\underline{a}, \bar{a}], B=[\underline{b}, \bar{b}]$, the standard difference is defined by $A-B=[\underline{a}-\bar{b}, \bar{a}-\underline{b}]$.

On next, we define a convenient relation such as the quotient space obtained from this relation will be isomorphic to \mathbb{R}.

Definition 2.1. Let $A, B \in \mathbb{I}, A=[\underline{a}, \bar{a}], B=[\underline{b}, \bar{b}] . \sim$ is a relation on \mathbb{I} and A is in relation with B, and write $A \sim B$, if $A-B \in \mathcal{S}$.

Remark 2.1. Let $A, B \in \mathbb{I}, A=[\underline{\bar{a}}, \overline{\bar{a}}], B=[\underline{b}, \bar{b}]$. If $[\underline{a}, \bar{a}]-[\underline{b}, \bar{b}]=[-c, c] \in \mathcal{S}$ then $\underline{a}-\bar{b}=-c$ and $\bar{a}-\underline{b}=c$; that is, $\underline{a}+\bar{a}=\underline{b}+\bar{b}$. Thus, considering $M_{A}=\underline{a}+\bar{a}, M_{B}=\underline{b}+\bar{b}$, we obtain that, $A \sim B$ if and only if $M_{A}=M_{B}$.

Note that, given $A, B, C \in \mathbb{I}, A=[\underline{a}, \bar{a}], B=[\underline{b}, \bar{b}]$ and $C=[\underline{c}, \bar{c}]$, then

- $(A, A) \in \sim$ because $M_{A}=M_{A}$, then \sim is reflexive.
- $A \sim B$ implies that $M_{A}=M_{B}$ then $B \sim A$, i.e. \sim is symmetric.
- $A \sim B$ and $B \sim C$ implies that $M_{A}=M_{B}=M_{C}$ then $A \sim C$.

Therefore, the relation \sim is an equivalence relation, that is, \sim is reflexive, symmetric and transitive. We will denote by $\langle A\rangle$ the equivalence class containing the interval $A \in \mathbb{I}$. The set of equivalence classes will be denoted by \mathbb{I} / \mathcal{S}. Note that if $\langle A\rangle \in \mathbb{I} / \mathcal{S}$, and considering $A=[\underline{a}, \bar{a}]=[a]$ when $\underline{a}=\bar{a}$ it is obtained the degenerated intervals, therefore, we can choose the representative of the class as

$$
\begin{align*}
\langle A\rangle & =\langle[\underline{a}, \bar{a}]\rangle \tag{1}\\
& =\left\langle\left[\frac{\underline{a}+\bar{a}}{2}\right]\right\rangle .
\end{align*}
$$

In particular, $\mathcal{S}=\langle[0,0]\rangle:=\langle 0\rangle$ represents the class of all symmetric intervals.
Graphically, if we consider $A \in \mathbb{I}$, considering the extremes of this interval as ordered pairs, we have that they can be represented by points in the half plane above the $x=y$ line. For our study in question, for example, if we consider $A=[-1,3]$, we will have that the class of A is represented by a degenerate interval, that is, $\langle[-1,3]\rangle=\left\langle\left[\frac{-1+3}{2}\right]\right\rangle=\langle[1]\rangle$, thus, geometrically $\langle[1]\rangle$ represents all intervals whose endpoints are on the ray perpendicular to the identity at the point $(1,1) \in \mathbb{R}^{2}$, see Figure 1.

For any $\langle A\rangle,\langle B\rangle \in \mathbb{I} / \mathcal{S}$ we define the addition $\langle A\rangle+\langle B\rangle$ by

$$
\langle A\rangle+\langle B\rangle=\langle A+B\rangle .
$$

Therefore $M_{A+B}=M_{A}+M_{B}$.
Lemma 2.1. $(\mathbb{I} / \mathcal{S},+)$ is a group, that is, for any $\langle A\rangle,\langle B\rangle,\langle C\rangle \in \mathbb{I} / \mathcal{S}$,
(i) $\langle A\rangle+\langle B\rangle=\langle B\rangle+\langle A\rangle$
(ii) $(\langle A\rangle+\langle B\rangle)+\langle C\rangle=\langle A\rangle+(\langle B\rangle+\langle C\rangle)$

Figure 1: Quotient Space of Intervals
(iii) $\langle A\rangle+\langle B\rangle=\langle A\rangle$ if and only if $\langle B\rangle=\langle 0\rangle$
(iv) $\langle A\rangle+\langle B\rangle=\langle 0\rangle$ if and only if $\langle A\rangle=\langle-B\rangle$.

We want to remark that $\{C=A+B: A \in\langle A\rangle, B \in\langle B\rangle\}=\langle A\rangle+\langle B\rangle$. Multiplication of an element of \mathbb{I} / \mathcal{S} by a real number λ is the following:

$$
\lambda \cdot\langle A\rangle=\langle\lambda \cdot A\rangle
$$

From Lemma 2.1, for any $A \in \mathbb{I}$, we have that $-\langle A\rangle=\langle-A\rangle$, is the additive inverse of $\langle A\rangle$. In particular, $1\langle A\rangle=\langle A\rangle$. Moreover, $\lambda M_{A}=M_{\lambda A}$ and the following properties hold.
Lemma 2.2. For any $\langle A\rangle,\langle B\rangle \in \mathbb{I} / \mathcal{S}$ and $c_{1}, c_{2} \in \mathbb{R}$, the following statements hold:
(i) $\left(c_{1} c_{2}\right) \cdot\langle A\rangle=c_{1} \cdot\left(c_{2} \cdot\langle A\rangle\right)$
(ii) $c_{1} \cdot(\langle A\rangle+\langle B\rangle)=c_{1} \cdot\langle A\rangle+c_{1} \cdot\langle B\rangle$
(iii) $\left(c_{1}+c_{2}\right) \cdot\langle A\rangle=c_{1} \cdot\langle A\rangle+c_{2}\langle A\rangle$.

Proof The proof follows immediately from the Remark 2.1.
From Lemma 2.1 and Lemma 2.2 we obtain the following lemma.
Theorem 2.1. $(\mathbb{I} / \mathcal{S},+, \cdot)$ is a linear space.
Now we will give other properties on the interval operations. First of all, we recall that if $A=[\underline{a}, \bar{a}], B=[\underline{b}, \bar{b}] \in \mathbb{I}$, the gH-difference $A \ominus_{g H} B$ is defined as follows

$$
A \ominus_{g H} B=C \Leftrightarrow\left\{\begin{array}{l}
(a) A=B+C \text { or } \tag{2}\\
(b) B=A+(-1) C .
\end{array}\right.
$$

In case (a), the gH-difference coincides with the well-known H-difference. Moreover, the gHdifference exists for any two compact intervals. [4] showed that the gH -difference and the π difference between the intervals $A, B \in \mathbb{I}$ are the same concept. Specifically,

$$
\begin{equation*}
A \ominus_{g H} B=A-_{\pi} B=[\min \{\underline{a}-\underline{b}, \bar{a}-\bar{b}\}, \max \{\underline{a}-\underline{b}, \bar{a}-\bar{b}\}] . \tag{3}
\end{equation*}
$$

Proposition 2.1. Let $\langle A\rangle,\langle B\rangle \in \mathbb{I} / \mathcal{S}$. Then

$$
\left\langle A \ominus_{g H} B\right\rangle=\langle A\rangle-\langle B\rangle
$$

Proof. Given $A, B \in \mathbb{I}$, taking into account (2) and (1), we have that, the class $\left\langle A \ominus_{g H} B\right\rangle$ is characterized by $M_{A \ominus_{g H} B}=\frac{(\underline{a}-\underline{b})+(\bar{a}-\bar{b})}{2}=\frac{(\underline{a}+\bar{a})-(\underline{b}+\bar{b})}{2}=\frac{\underline{a}+\bar{a}}{2}-\frac{\underline{b}+\bar{b}}{2}=M_{A}-M_{B}$ then $\left\langle A \ominus_{g H} B\right\rangle=\langle A\rangle-\langle B\rangle$.

We now provide a norm $\|\cdot\|$ on the space \mathbb{I} / \mathcal{S}.
Definition 2.2. Let $\langle A\rangle=\langle[\underline{a}, \bar{a}]\rangle \in \mathbb{I} / \mathcal{S}$. We define the norm of $\langle A\rangle$ by

$$
\|\langle A\rangle\|=|\underline{a}+\bar{a}| .
$$

Remark 2.2. $(\mathbb{I} / \mathcal{S},\|\cdot\|)$ is a normed linear space. Moreover, we have the metric $d_{\text {sup }}$ on \mathbb{I} / \mathcal{S} defined by

$$
d_{\text {sup }}(\langle A\rangle,\langle B\rangle)=\|\langle A\rangle-\langle B\rangle\|,
$$

for all $\langle A\rangle,\langle B\rangle \in \mathbb{I} / \mathcal{S}$. Notice that for $A=[\underline{a}, \bar{a}]$ and $B=[\underline{b}, \bar{b}], d_{\text {sup }}(\langle A\rangle,\langle B\rangle)=|(\underline{a}+\bar{a})-(\underline{b}+\bar{b})|$.
The following properties is a immediate consequence.
Proposition 2.2. Let $\langle A\rangle,\langle B\rangle,\langle C\rangle \in \mathbb{I} / \mathcal{S}$. Then $d_{\text {sup }}$ is translation invariant, that is,

$$
d_{\text {sup }}(\langle A\rangle+\langle C\rangle,\langle B\rangle+\langle C\rangle)=d_{\text {sup }}(\langle A\rangle,\langle B\rangle)
$$

Lemma 2.3. ($\left.\mathbb{I} / \mathcal{S}, d_{\text {sup }}\right)$ is a complete metric space.

3 Conclusion

This article introduced a quotient space of closed and bounded intervals with respect to the family of symmetric intervals. We showed that it is a normed linear space. Since the space of closed and bounded intervals can be embed on this quotient space, we introduced a concept of metric to proof that these space is a complete metric space.

Acknowledgments

The authors acknowledge the financial support from CAPES with Process Number 88882.315806 /2019-01.

References

[1] Sergey Mironovich Aseev. "Quasilinear operators and their application in the theory of multivalued mappings". In: Trudy Matematicheskogo Instituta imeni VA Steklova 167 (1985), pp. 25-52.
[2] Y. Chalco-Cano, H. Román-Flores, and M.D. Jiménez-Gamero. "Generalized derivative and π-derivative for set-valued functions". In: Information Sciences 181.11 (2011), pp. 21772188. DOI: 10.1016/j.ins.2011.01.023. URL: https://doi.org/10.1016\%2Fj.ins. 2011. 01.023.
[3] Y. Chalco-Cano et al. "Algebra of generalized Hukuhara differentiable interval-valued functions: review and new properties". In: Fuzzy Sets and Systems 375 (2019), pp. 53-69. DOI: 10.1016/j.fss.2019.04.006. URL: https://doi.org/10.1016\%2Fj.fss.2019.04.006.
[4] Yurilev Chalco-Cano, Heriberto Román-Flores, and María-Dolores Jiménez-Gamero. "Generalized derivative and π-derivative for set-valued functions". In: Information Sciences 181.11 (2011), pp. 2177-2188.
[5] Dug Hun Hong and Hae Young Do. "Additive decomposition of fuzzy quantities". In: Information sciences 88.1-4 (1996), pp. 201-207.
[6] Hans Rådström. "An embedding theorem for spaces of convex sets". In: Proceedings of the American Mathematical Society 3.1 (1952), pp. 165-169.
[7] Marko Antonio Rojas-Medar et al. "Fuzzy quasilinear spaces and applications". In: Fuzzy Sets and Systems 152.2 (2005), pp. 173-190.
[8] Luciano Stefanini and Barnabás Bede. "Generalized Hukuhara differentiability of intervalvalued functions and interval differential equations". In: Nonlinear Analysis: Theory, Methods \& Applications 71.3-4 (2009), pp. 1311-1328. DOI: 10.1016/j.na.2008.12.005. URL: https://doi.org/10.1016\%2Fj.na.2008.12.005.
[9] Elder J. Villamizar-Roa, Y. Chalco-Cano, and H. Roman-Flores. "Interval-valued functions in a quotient space". In: 2015 Annual Conference of the North American Fuzzy Information Processing Society (NAFIPS) held jointly with 2015 5th World Conference on Soft Computing (WConSC). IEEE, 2015. DOI: 10.1109/nafips-wconsc.2015.7284182. URL: https://doi.org/10.1109\%2Fnafips-wconsc.2015.7284182.

[^0]: ${ }^{1}$ ginomaqui@gmail.com.
 ${ }^{2}$ ulcilea.leal@uftm.edu.br

