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Quotient space of intervals
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Abstract. This article studies the quotient space of intervals, for this is defined an equivalence
relation considering a symmetric difference, is obtained the quotient space of intervals where is
defined a specific representative of the equivalence class, and an appropriated norm and metric is
defined to proof that this space is a complete metric space.
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1 Introduction

From interval analysis it is well known that the space of intervals provided with the standard
sum and the product of a scalar forms a quasi-vector space [1, 7]. This is because, for example,
an interval does not have inverse element and therefore subtraction does not have many useful
properties (see [2, 8]). But if we define a specific equivalence relation we can establish an equivalence
class in such a way that it is possible to construct a quotient space of intervals [5, 9], in order to
develop an interval mathematical analysis.

Radström’s embedding theorem [6] tells us that there is an isometric mapping π : I→ B, where
B is a real normed linear space (space of equivalence classes), and I is the family of all bounded
closed intervals [6]. Taking a norm to induce a metric we can prove that this is a complete metric
space.

The paper is organized as follows. Section 2 introduces the an equivalence relation to determine
the equivalence class, then a specific representative is defined and then is defined the quotient space,
and in Section 3 we present the conclusion.

2 The quotient space of intervals

Let I is the family of all bounded closed intervals, on this space it is well known that the addition
is associative, commutative and its neutral element is {0}. For λ = −1, scalar multiplication gives
the opposite −A = (−1)A = {−a : a ∈ A} but, in general, A+ (−)A 6= {0}, that is, the space I is
not a linear space.

This fact is a crucial point due the necessity of working on a linear space in order to define in
a suitable sense the derivative of interval valued functions. Taking into account this problem, we
will introduce a natural equivalence relation between elements of I which can be used to divide
I into equivalence classes having group properties for the addition operation. Building a vector
space over the elements of I is important, as this will allow us to define important limits such as
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derivative and integral, in such a way that they have important properties such as the linearity of
the derivative, a property that we do not have when we talk about gH-derivative for example [3].

Given A = [a, a] ∈ I, the interval A is called symmetric if a = −a and the class of symmetric
intervals of I will be denoted by S. Given A,B ∈ I, where A = [a, a], B = [b, b], the standard
difference is defined by A−B = [a− b, a− b].

On next, we define a convenient relation such as the quotient space obtained from this relation
will be isomorphic to R.

Definition 2.1. Let A,B ∈ I, A = [a, a], B = [b, b]. ∼ is a relation on I and A is in relation with
B, and write A ∼ B, if A−B ∈ S.

Remark 2.1. Let A,B ∈ I, A = [a, a], B = [b, b]. If [a, a] − [b, b] = [−c, c] ∈ S then a − b = −c
and a− b = c; that is, a+ a = b+ b. Thus, considering MA = a+ a,MB = b+ b, we obtain that,
A ∼ B if and only if MA =MB .

Note that, given A,B,C ∈ I, A = [a, a], B = [b, b] and C = [c, c], then

• (A,A) ∈ ∼ because MA =MA, then ∼ is reflexive.

• A ∼ B implies that MA =MB then B ∼ A, i.e. ∼ is symmetric.

• A ∼ B and B ∼ C implies that MA =MB =MC then A ∼ C.

Therefore, the relation ∼ is an equivalence relation, that is, ∼ is reflexive, symmetric and
transitive. We will denote by 〈A〉 the equivalence class containing the interval A ∈ I. The set of
equivalence classes will be denoted by I/S. Note that if 〈A〉 ∈ I/S, and considering A = [a, a] = [a]
when a = a it is obtained the degenerated intervals, therefore, we can choose the representative of
the class as

〈A〉 = 〈[a, a]〉 (1)

=

〈[
a+ a

2

]〉
.

In particular, S = 〈[0, 0]〉 := 〈0〉 represents the class of all symmetric intervals.
Graphically, if we consider A ∈ I, considering the extremes of this interval as ordered pairs, we

have that they can be represented by points in the half plane above the x = y line. For our study in
question, for example, if we consider A = [−1, 3], we will have that the class of A is represented by

a degenerate interval, that is, 〈[−1, 3]〉 =
〈[
−1 + 3

2

]〉
= 〈[1]〉, thus, geometrically 〈[1]〉 represents

all intervals whose endpoints are on the ray perpendicular to the identity at the point (1, 1) ∈ R2,
see Figure 1.

For any 〈A〉, 〈B〉 ∈ I/S we define the addition 〈A〉+ 〈B〉 by

〈A〉+ 〈B〉 = 〈A+B〉.

Therefore MA+B =MA +MB .

Lemma 2.1. (I/S,+) is a group, that is, for any 〈A〉, 〈B〉, 〈C〉 ∈ I/S,

(i) 〈A〉+ 〈B〉 = 〈B〉+ 〈A〉

(ii) (〈A〉+ 〈B〉) + 〈C〉 = 〈A〉+ (〈B〉+ 〈C〉)
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Figure 1: Quotient Space of Intervals

(iii) 〈A〉+ 〈B〉 = 〈A〉 if and only if 〈B〉 = 〈0〉

(iv) 〈A〉+ 〈B〉 = 〈0〉 if and only if 〈A〉 = 〈−B〉.

We want to remark that {C = A+B : A ∈ 〈A〉, B ∈ 〈B〉} = 〈A〉+ 〈B〉. Multiplication of an
element of I/S by a real number λ is the following:

λ · 〈A〉 = 〈λ ·A〉.

From Lemma 2.1, for any A ∈ I, we have that −〈A〉 = 〈−A〉, is the additive inverse of 〈A〉. In
particular, 1〈A〉 = 〈A〉. Moreover, λMA =MλA and the following properties hold.

Lemma 2.2. For any 〈A〉, 〈B〉 ∈ I/S and c1, c2 ∈ R, the following statements hold:

(i) (c1c2) · 〈A〉 = c1 · (c2 · 〈A〉)

(ii) c1 · (〈A〉+ 〈B〉) = c1 · 〈A〉+ c1 · 〈B〉

(iii) (c1 + c2) · 〈A〉 = c1 · 〈A〉+ c2〈A〉.

Proof The proof follows immediately from the Remark 2.1. �
From Lemma 2.1 and Lemma 2.2 we obtain the following lemma.

Theorem 2.1. (I/S,+, ·) is a linear space.

Now we will give other properties on the interval operations. First of all, we recall that if
A = [a, a], B = [b, b] ∈ I, the gH-difference A	gH B is defined as follows

A	gH B = C ⇔
{

(a) A = B + C or
(b) B = A+ (−1)C. (2)
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In case (a), the gH-difference coincides with the well-known H-difference. Moreover, the gH-
difference exists for any two compact intervals. [4] showed that the gH-difference and the π-
difference between the intervals A,B ∈ I are the same concept. Specifically,

A	gH B = A−π B =
[
min{a− b, a− b},max{a− b, a− b}

]
. (3)

Proposition 2.1. Let 〈A〉, 〈B〉 ∈ I/S. Then

〈A	gH B〉 = 〈A〉 − 〈B〉.

Proof. Given A,B ∈ I, taking into account (2) and (1), we have that, the class 〈A 	gH B〉 is

characterized by MA	gHB =
(a− b) + (a− b)

2
=

(a+ a)− (b+ b)

2
=
a+ a

2
− b+ b

2
= MA −MB

then 〈A	gH B〉 = 〈A〉 − 〈B〉.

We now provide a norm ‖ · ‖ on the space I/S.

Definition 2.2. Let 〈A〉 = 〈[a, a]〉 ∈ I/S. We define the norm of 〈A〉 by

‖〈A〉‖ = |a+ a|.

Remark 2.2. (I/S, ‖ · ‖) is a normed linear space. Moreover, we have the metric dsup on I/S
defined by

dsup(〈A〉, 〈B〉) = ‖〈A〉 − 〈B〉‖,

for all 〈A〉, 〈B〉 ∈ I/S. Notice that for A = [a, a] and B = [b, b], dsup(〈A〉, 〈B〉) = |(a+a)− (b+ b)|.

The following properties is a immediate consequence.

Proposition 2.2. Let 〈A〉, 〈B〉, 〈C〉 ∈ I/S. Then dsup is translation invariant, that is,

dsup(〈A〉+ 〈C〉, 〈B〉+ 〈C〉) = dsup(〈A〉, 〈B〉);

Lemma 2.3. (I/S, dsup) is a complete metric space.

3 Conclusion
This article introduced a quotient space of closed and bounded intervals with respect to the

family of symmetric intervals. We showed that it is a normed linear space. Since the space of
closed and bounded intervals can be embed on this quotient space, we introduced a concept of
metric to proof that these space is a complete metric space.
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