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A finite difference approach to solve obstacle-type problems
using complementarity models
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This paper focuses on elaborating practical finite difference schemes to reduce the computational
cost incurred in the construction of large sparse matrices. Our methodology generates a sequence of
lower-dimensional vectors to mitigate this cost. In addition, we test our approach on obstacle-type
problems in its equivalent version of a complementarity model.
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1 Introduction
The finite difference method (FDM) is a numerical technique used to obtain approximate so-

lutions to differential equations, [1]. FDM has a high computational cost because this method
replaces the derivatives in the differential equation with finite-difference approximations and leaves
a large but finite algebraic system of equations. We employ FDM to solve obstacle-type problems
(OTP) [2]; however, we do not solve this problem directly but in its associated complementarity
version. Generally, a solution to an optimization problem is the solution to the complementarity
problem; however, the converse is not always correct. To validate the reciprocal, deep regularity
analyzes are necessary, thus obtaining the equivalence between optimization and complementarity
problems. This equivalence facilitates multiple and varied applications, as mentioned in [2, 3].

Our proposal reduces the cost of processing high-dimensional sparse matrices by building them
based on a sequence of lower-dimensional vectors. We detail the construction of these vectors in
the appendix. In addition, we validate the numerical schemes with two obstacle-type problems,
such as the Porous dam problem [4] and the Elastoplastic torsion problem [5]. We write
the Porous Dam problem as a linear complementarity problem. In comparison, the Elastoplastic
torsion problem, we formulate as a mixed nonlinear complementarity problem.

Many methods are applied to solve complementarity problems, among which smoothing meth-
ods [6], projection methods [7], and interior point algorithms [8] stand out. In particular, Herskovits
and Mazorche [8], introduced the FDA-NCP and FDA-MNCP algorithms that solve complemen-
tarity problems in simple and mixed versions. FDA-NCP and FDA-MNCP stand out for their
versatility and potential to solve problems with high computational costs.

This paper is organized as follows: in Section 2, we introduce the preliminaries related to a basic
notation and the complementarity models explored in this paper. A concise finite difference scheme
is present in Section 3. In Section 4, we describe two applications in obstacle-type problems. One
of them is the porous dam problem, and the other is the elastoplastic torsion problem. Finally,
the conclusions are addressed in Section 5, and the Appendix detail the construction of the vectors
that formulate our numerical scheme.
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2 Preliminaires

We write Rm to represent the Euclidean space of dimension m. In particular, 1m and 0m

are vectors whose all components are ones and zeros, respectively. We write x′ to represent the
transpose of the vector x ∈ Rm. Given a vector x ∈ Rm, we denote x ≥ 0 to represent a vector
where all components are non-negatives. In addition, ⟨x, y⟩ represents the usual inner product
between the vectors x ∈ Rn and y ∈ Rn and ∥x∥ =

√
⟨x, x⟩ denote the Euclidean norm of x.

Given the vectors x ∈ Rn and y ∈ Rn, x • y represents the Hadamard product between them.
The space of real matrices of m rows and n columns is denoted by Rm,n. Also, diag(x) ∈ Rn,n

represents the diagonal matrix composed by elements of the vector x ∈ Rn. We write X ⊗ Y ∈
Rmp,nq to denote the Kronecker product of the matrices X ∈ Rm,n and Y ∈ Rp,q.

Considering a differentiable application F : Rm × Rn → Rm, we denote by JxF ∈ Rm,m and
JyF ∈ Rn,m to represent the Jacobian matrices concerning the variables x and y respectively.
Furthermore, we present below the complementarity problems used in this paper.

Problem 1 (Nonlinear Complementarity Problem). Given F : Rm → Rm a differentiable appli-
cation, the Nonlinear Complementarity Problem consists in determine x ∈ Rm such that x ≥ 0,
F(x) ≥ 0 and x • F(x) = 0.

Problem 2 (Mixed Nonlinear Complementarity Problem). Given F : Rm × Rn → Rm and
G : Rm × Rn → Rn differentiable applications, the Mixed Nonlinear Complementarity Problem
consists in determine x ∈ Rm and y ∈ Rn such that x ≥ 0, F(x, y) ≥ 0, x • F(x, y) = 0 and
G(x, y) = 0.

This work applies the FDA-NCP and FDA-MNCP to calculate the solutions to the abovemen-
tioned problems. These algorithms generate a sequence of interior points whose limit value is a
solution to the complementarity problem. We briefly summarize these algorithms in the next.

Algorithm 1: FDA-NCP
Input: The parameters α, β, tol ∈ (0, 1) and ε > 0.
Output: A solution to Problem 1.

• Step 1: Initialize with x0 ∈ Ωϵ = {x ∈ Rm : ϕ(x) ≤ ϵ}, where ϕ(x) = ⟨x,F(x)⟩. Assign
x← xk, y ← yk and k ← k + 1.

For each k = 1, 2 . . . , follows

• Step 2: Compute the vector dk ∈ Rm by solving[
diag(F(x)) + diag(x)JxF

]
dk =

[
−x • F(x, y) + α · 1m

]
.

• Step 3 Obtain the first element β∗ ∈ {1, β, β2, . . .} such that

x+ β∗dkx ≥ 0 , F(x+ β∗dkx) ≥ 0 and φ(x+ β∗dkx) ≤ ε.

• Step 4: Assign x← x+ β∗dkx. If ϕ(x) ≤ tol then x is a solution to Problem 1, otherwise,
return to Step 2.
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Algorithm 2: FDA-MNCP
Input: The parameters α, β, tol ∈ (0, 1) and ε > 0.
Output: A solution to Problem 2.

• Step 1: Initialize with (x0, y0) ∈ Ωϵ = {(x, y) ∈ Rm × Rn : ϕ(x) ≤ ϵ}, where
ϕ(x, y) = ⟨x,F(x, y)⟩+ ∥G(x, y)∥2. Assign x← xk, y ← yk and k ← k + 1.

For each k = 1, 2 . . . , follows

• Step 2: Compute the vector dk =

[
dkx
dky

]
∈ Rn+m by solving

[
diag(F(x, y)) + diag(x)JxF diag(x)JyF

JxG JyG

]
dk =

[
−x • F(x, y) + α · 1m

−G(x, y)

]
.

• Step 3 Obtain the first element β∗ ∈ {1, β, β2, . . .} such that

x+ β∗dkx ≥ 0 , F(x+ β∗dkx, y + β∗dky) ≥ 0 and ϕ(x+ β∗dkx, y + β∗dky) ≤ ε.

• Step 4: Assign x← x+ β∗dkx and y ← y + β∗dky . If ϕ(x, y) ≤ tol then (x, y) then is a
solution to Problem 2 otherwise, return to Step 2.

3 Finite difference schemes
Given Ω = {(x, y) ∈ R2 : a ≤ x ≤ b and c ≤ y ≤ d} and u : Ω → R, u = 0, ∀ (x, y) ∈ ∂Ω.

We write N to represents the number of sub-intervals in [a, b] and [c, d] and Ui,j to represent
approximate value of u(xi, yj), ∀ i, j = 0, . . . , N + 1. Using the boundary condition, we obtain
U0,i = UN+1,i = Ui,0 = Ui,N+1 = 0,∀ i = 0, . . . , N + 1. Finally, we employ FDM to obtain a
numerical scheme to Laplacian and gradient vector norm as functions of M = N2 variables.

∆u(xi, yj) ≈ Ui−1,j − 2Ui,j + Ui+1,j

h2
+

Ui,j−1 − 2Ui,j + Ui,j+1

k2
, (1)

∥∇u(xi, yj)∥ ≈

√(
Ui+1,j − Ui−1,j

2h

)2

+

(
Ui,j+1 − Ui,j−1

2k

)2

, (2)

where h = b−a
N+1 and k = d−c

N+1 . We order these variables row by row, starting with U1,1, . . . , UN,1,
continuing with U1,2, . . . , UN,2, until we complete U1,N , . . . , UN,N and define a new variable, so
it depends on only one index, by the form U ℓ = Ui,j , whenever i = ℓ−j

N + 1 and j = ℓmodN .
Denoting U = [U1, . . . , UM ]′ ∈ RM , we write (1) and (2), in a more concise form ∆u(x1, y1)

...
∆u(xN , yN )

 ≈ PU and

 ∥∇u(x1, y1)∥
...

∥∇u(xN , yN )∥

 ≈√
(QU) • (QU) + (RU) • (RU) , (3)

where P, Q and R are square matrices of dimension M , define by

P =

M∑
ℓ=1

e(ℓ)⊗
( 1

h2
a′(ℓ) +

1

k2
b′(ℓ)

)
, Q =

M∑
ℓ=1

1

2h
e(ℓ)⊗ c′(ℓ), and R =

M∑
ℓ=1

1

2k
e(ℓ)⊗ d′(ℓ).

The computations of these matrices are detailed in the appendix.
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4 Applications

In this section, we illustrate our propose with two obstacle-type problems.

4.1 Porous dam problem

This problem focuses on the filtration of liquids through a rectangular porous dam between two
different heights reservoirs. This problem focuses on the filtration of liquids through a rectangular
porous dam between two different heights reservoirs. This problem aims to determine the curve that
limits the wet and dry areas. In [4], the construction of this problem as a simple complementarity
model was presented in detail.

Application 1. Given Ω = {(x, y) ∈ R2 : 0 ≤ x ≤ L and 0 ≤ y ≤ H1, 0 < H0 < H1}, the Porous
Dam problem consists in determine u : Ω→ R such that

−∆u ≥ 1, in Ω , u ≥ 0, in Ω , (−∆u+ 1) · u = 0, in Ω and u = g, on ∂Ω, (4)

where

g(x, y) =

{
x
2L (H0 − y)2 + L−x

2L (H1 − y)2 , 0 ≤ y ≤ H0,
L−x
2L (H1 − y)2 , H0 ≤ y ≤ H1.

.

Also, the wet region is Ωwet = {(x, y) ∈ R2 : y ≤ φ(x)}, where φ : [0, L] → R is a decreasing
function such that φ(0) = H1 and φ(L) > H0.

Let the parameters H1 = 6, 3014, H0 = 1, 2359 and L = 6, 1592, we write (4) as Problem 1 and
define F : RM → RM by

F(x) = −Px+ 1M . (5)

Considering N = 50, and consequently M = 2500, we replace this value in (5) to apply FDA-NCP
and obtain a numerical solution of Application 1. In Figure 1(a) we show the function u : Ω→ R,
and Figure 1(b) illustrates the function φ : [0, L]→ R that separates the wet and dry regions.

(a) Representation of the function u : Ω → R. (b) Representation of the curve φ that separate the dry
region with flow region of Ω.

Figure 1: Numerical solution of (4) with H0 = 6, 3014, H1 = 1, 2359, L = 6, 1592 and M = 2500.
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4.2 Elastoplastic torsion problem
Considering an isotropic and homogeneous elastic cylinder with a cross-section subject to a

torsion applied at the ends and the lateral boundary stress-free. After applying torque, the resulting
configuration separates the cross-section into an elastic and plastic region. The objective of this
problem is to determine these regions.

Application 2. Considering Ω ⊂ R2 and γ plasticity coefficient according to the material, the
Elastoplastic torsion problem consists in determine u : Ω→ R such that

−△u− τ ≥ 0, in Ω , γ − ∥∇u∥ ≥ 0, in Ω and (−△u− τ
)(
γ − ∥∇u∥) = 0, in Ω. (6)

Also, the elastic and plastic regions are denoted by ΩE and ΩP, and defined as follows:

ΩE = {(x, y) ∈ Ω : ∥∇u(x, y)∥ < γ},
ΩP = {(x, y) ∈ Ω : ∥∇u(x, y)∥ = γ}.

Let Ω =]0, 1[×]0, 1[, γ = 1 and τ = 5, we formulate (6) as Problem 2, and define F : RM → RM

and G : RM → RM as follows

F(x, y) = γ · 1M −
√

(Qy) • (Qy) + (Ry) • (Ry),
G(x, y) = −x− Py − τ · 1M .

(7)

We use FDA-MNCP with M = 6400 to obtain the numerical solution of (6), see Figure 2(a). While
in Figure 2(b) we illustrate the plastic region and elastic region.

(a) Representation of the function u : Ω → R. (b) Representation of plastic region ΩP (blue)
and elastic region ΩE (yellow).

Figure 2: Numerical solution of (6) with γ = 1, τ = 5, Ω = [0, 1]× [0, 1] and M = 6400.

5 Conclusions
We propose a practical and versatile finite difference scheme to solve numerically obstacle-

type problems in their version of complementarity. This approach determines the differentiable
applications F and G computed in terms of matrices of high dimensions. However, we use a
sequence of lower-dimensional vectors to mitigate this computational cost caused by the increased
memory used when defining these matrices of high dimensions. Our approach makes the FDA-NCP
and FDA-MNCP more robust and efficient.
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Appendix

First, we write ek(ℓ) = 1 whenever k = ℓ, otherwise ei(ℓ) = 0. For each ℓ = 1, . . . ,M , we obtain
the vector a(ℓ), b(ℓ), c(ℓ), and d(ℓ), as follows:

- If ℓ = 1 then cℓ+1(ℓ) = 1, ck(ℓ) = 0, ∀ k ̸= ℓ + 1, dℓ+N (ℓ) = 1, and dk(ℓ) = 0, ∀ k ̸= ℓ + N
Also,

ak(ℓ) =


−2 , k = ℓ

1 , k = ℓ+ 1

0 , otherwise
and bk(ℓ) =


−2 , k = ℓ

1 , k = ℓ+N

0 , otherwise

- If ℓ = N then cℓ−1(ℓ) = −1, ck(ℓ) = 0,∀ k ̸= ℓ− 1, dℓ+N (ℓ) = 1, and dk(ℓ) = 0, ∀ k ̸= ℓ+N .
Also,

ak(ℓ) =


−2 , k = ℓ

1 , k = ℓ− 1

0 , otherwise
and bk(ℓ) =


−2 , k = ℓ

1 , k = ℓ+N

0 , otherwise

- If ℓ = M − N + 1 then cℓ+1(ℓ) = 1, ck(ℓ) = 0,∀ k ̸= ℓ + 1, dℓ−N (ℓ) = 1, and dk(ℓ) = 0,
∀ k ̸= ℓ−N . Also,

ak(ℓ) =


−2 , k = ℓ

1 , k = ℓ+ 1

0 , otherwise
and bk(ℓ) =


−2 , k = ℓ

1 , k = ℓ−N

0 , otherwise
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- If ℓ = M then cℓ−1(ℓ) = −1, ck(ℓ) = 0, ∀ k ̸= ℓ − 1, dℓ−N (ℓ) = −1, dk(ℓ) = 0, ∀ k ̸= ℓ −N .
Also,

ak(ℓ) =


−2 , k = ℓ

1 , k = ℓ− 1

0 , otherwise
and bk(ℓ) =


−2 , k = ℓ

1 , k = ℓ−N

0 , otherwise

- If ℓ ∈ {2, 3, . . . , N − 1} then cℓ−1(ℓ) = −1, cℓ+1(ℓ) = 1, ck(ℓ) = 0, ∀ k ̸= ℓ − 1, ℓ + 1,
dℓ+N (ℓ) = 1, and dk(ℓ) = 0, ∀ k ̸= ℓ+N . Also,

ak(ℓ) =


−2 , k = ℓ

1 , k = ℓ− 1

1 , k = ℓ+ 1

0 , otherwise

and bk(ℓ) =


−2 , k = ℓ

1 , k = ℓ+N

0 , otherwise

- If ℓ ∈ {rN + 1, r = 1, . . . , N − 2} then cℓ+1(ℓ) = 1, ck(ℓ) = 0, ∀ k ̸= ℓ + 1, dℓ−N (ℓ) = −1,
dℓ+N (ℓ) = 1, and dk(ℓ) = 0, ∀ k ̸= ℓ−N, ℓ+N . Also,

ak(ℓ) =


−2 , k = ℓ

1 , k = ℓ+ 1

0 , otherwise
and bk(ℓ) =


−2 , k = ℓ

−1 , k = ℓ−N

1 , k = ℓ+N

0 , otherwise

- If ℓ ∈ {rN, r = 2, . . . , N − 1} then cℓ−1(ℓ) = −1, ck(ℓ) = 0, ∀ k ̸= ℓ − 1, dℓ−N (ℓ) = −1,
dℓ+N (ℓ) = 1, and dk(ℓ) = 0, ∀ k ̸= ℓ−N, ℓ+N . Also,

ak(ℓ) =


−2 , k = ℓ

1 , k = ℓ− 1

0 , otherwise
and bk(ℓ) =


−2 , k = ℓ

−1 , k = ℓ−N

1 , k = ℓ+N

0 , otherwise

- If ℓ ∈ {M−N+r, r = 2, . . . , N−1} then cℓ−1(ℓ) = −1, cℓ+1(ℓ) = 1, ck(ℓ) = 0, ∀ k ̸= ℓ−1, ℓ+1,
dℓ−N (ℓ) = −1, and dk(ℓ) = 0, ∀ k ̸= ℓ−N . Also,

ak(ℓ) =


−2 , k = ℓ

1 , k = ℓ− 1

1 , k = ℓ+ 1

0 , otherwise

and bk(ℓ) =


−2 , k = ℓ

1 , k = ℓ−N

0 , otherwise

- For internal points, cℓ−1(ℓ) = −1, cℓ+1(ℓ) = 1, ck(ℓ) = 0, ∀ k ̸= ℓ − 1, ℓ + 1, dℓ−N (ℓ) = −1,
dℓ+N (ℓ) = 1, and dk(ℓ) = 0, ∀ k ̸= ℓ−N, ℓ+N . Also,

ak(ℓ) =


−2 , k = ℓ

1 , k = ℓ− 1

1 , k = ℓ+ 1

0 , otherwise

and bk(ℓ) =


−2 , k = ℓ

1 , k = ℓ−N

1 , k = ℓ+N

0 , otherwise

Finally,

P =

M∑
ℓ=1

e(ℓ)⊗
( 1

h2
a′(ℓ) +

1

k2
b′(ℓ)

)
, Q =

M∑
ℓ=1

1

2h
e(ℓ)⊗ c′(ℓ), and R =

M∑
ℓ=1

1

2k
e(ℓ)⊗ d′(ℓ).
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