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1 Introduction

The celebrated Camassa–Holm equation,

ut + kux − utxx + 3uux = 2uxuxx + uuxxx, (1)

where u is the fluid velocity along the x direction, first appear in the classical work of Camassa
and Holm as a swallow water equation derived from the Hamiltonian for Euler’s equations in
the swallow water regime [4, 5]. Equation (1) possesses a large number of attributes: it is
integrable, bi-Hamiltonian, admits soliton solutions and other properties characteristic of the
KdV type of equations. This is the reason why it is one of the most well studied equations in
the literature [7, 10]. Among others it was studied by symmetry analysis methods, shown that
— like the KdV equation — is self-adjoint and conservation laws were constructed [8, 12].

Constructing conservation laws using symmetries in an algorithmic fashion is a relative new
method introduced in [14–16]. The method can be used even when the PDE do not possesses
a Lagrangian or is of even order. In addition, any kind of symmetry can be used in order to
construct a conservation law. Lately, this method is extended in perturbation theory using the
concept of approximate symmetries [1, 3, 9, 17] in order to construct approximate conservation
laws [18, 19,23].

In the present work we consider equation (1) as a perturbation of the PDE

ut − utxx + 3uux = 2uxuxx + uuxxx, (2)

i.e. we assume that the arbitrary parameter k � 1, obtain the approximate symmetries and
construct its approximate conservation law. To our knowledge this is the first time that the
approximate symmetries of equation (1) are given and used for obtaining an approximate con-
servation law for it. For all the calculations involved the symbolic package SYM for Mathematica
was used [6].

In the next section we present in brief the basic notions from the symbolic arsenal used in
the remainder of this paper. In section 3 the main results of this work are given. Namely, the
approximate symmetries and a non trivial approximate conservation law. Finally, we briefly
discuss these results on the last section.
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2 Approximate symmetries and conservation laws

2.1 Approximate symmetries

The notion of an approximate symmetry builds upon the well established in the literature notion
of classical, or Lie, symmetry and its extensions [2,11,13,20–22]: the symmetry condition must
now be satisfied only up to the chosen order of the approximation.

Consider a system of differential equations

Fα = F 0
α + νF 1

α = 0, α = 1, · · · ,m, (3)

where ν is a small parameter (for ν = 0, we have the unperturbed system). An approximate
Lie symmetry group of the above system is a local one-parameter group of diffeomorphisms
(x, u) 7→ (x̄(x, u, ε, ν), ū(x, u, ε, ν)) =: Tε such that

a) x̄(x, u, 0, ν) ≈ x, ū(x, u, 0, ν) ≈ u;

b) TεTδ = Tε+δ;

c) the infinitesimal generator X of the approximated Lie symmetry group is

X = ξi(x, u, ν)
∂

∂xi
+ ηα(x, u, ν)

∂

∂uα
, (4)

where

ξi(x, u, ν) =
∂x̄i(x, u, ε, ν)

∂ε

∣∣∣∣
ε=0

, ηα(x, u, ν) =
∂η̄α(x, u, ε, ν)

∂ε

∣∣∣∣
ε=0

.

Besides, the approximated generator (4) can readily be written as

X = X0 + νX1, (5)

where X0 is a Lie point symmetry generator of the unperturbed system F 0
α = 0 and X1 is

retrieved from the conditions
X1(F

0
α)
∣∣
F 0
α=0

+H = 0,

and

H =
1

ν
X0(F

0
α + νF 1

α)

∣∣∣∣
F 0
α+νF

1
α=0

,

where a suitable prolongation of the symmetry generators X1, X0 is assumed. Hence the
approximate symmetry condition is now

X
(
F 0
α + νF 1

α

)∣∣
F 0
α+νF

1
α=0

= O(ν2),

again a suitable prolongation for the operator (4) is assumed to be chosen.

2.2 Approximate conservation laws

Similarly, the well established theorem for constructing conservation laws taking advantage of
the self-adjointness is now assumed to be valid up to the chosen order of the approximation
using an approximate symmetry instead of a classical one.

We say that a vector field C = (C1, · · · , Cn) is an approximate conserved current to the
system (3) if

DiC
i
∣∣
F 0
α+νF

1
α=0

= O(ν2). (6)

For further and a deep discussion, see also [18,19].
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Following Ibragimov’s work, given a perturbed system (3), we can construct the adjoint
perturbed system

F ∗α :=
δ(vβFβ)

δuα
= 0. (7)

Then, it is possible to construct an approximate conservation law for the system Fα =
0, F ∗α = 0. However, such constructed vector is a nonlocal approximated vector for the perturbed
system (3).

More recently, [23] introduced a rigorous basis relating approximate conservation laws and
Ibragimov’s theory on conservation laws, extending the results introduced in [15].

In fact, in [23] (see also [15]), it is introduced and discussed the following concept:

Definition 1. (Approximate nonlinear self-adjointness). The perturbed system (3) is called ap-
proximate nonlinear self-adjoint if the adjoint system (7) is approximate satisfied for all solutions
u of system (3) upon a substitution

vσ = φσ(x, u) + εϕσ(x, u), σ = 1, · · · ,m,

such that not all φσ and ϕσ are identically equal to zero.

Once having this definition, we can construct local approximate conserved currents for the
system under investigation by using the formula

Ci = ξiL+
∞∑

i1+···+in=0

Di1 · · ·Din(Wα)
δ∗L

δ∗uαi i1 ... in

(8)

were Wα = ηα − ξiuαi ,

δ∗

δ∗ui1...in
=

∂

∂u
+

∞∑
s=j1+···+jn=1

(−1)s

(
s

j1,...,jn

)(
s+i1+···in

i1+j1,...,in+jn

)Dj1 · · ·Djn

∂

∂u(i1+j1) ... (in+jn)
,

(
N

i1,i2,...,ir

)
= N

i1!i2!...ir!
, N = i1 + i2 + · · ·+ ir is the multinomial, ij ≥ 0 denotes the order of the

derivative for the jth independent variable, Dij = dij/d(xj)ij and L = vβFβ.

3 Main results

By using SYM interactively we obtain the approximate symmetries of equation (1):

∂x, k∂x,

∂t, k∂t,

k(t∂t − u∂u), (t∂t − u∂u)− k

2
(t∂x + ∂u).

Comparing them with the Lie point symmetries of the unperturbed equation (2),

∂x, ∂t, t∂t − u∂u,

we can conclude that the perturbed equation inherits the symmetries of the unperturbed equa-
tion since all are stable. This fact can enable one to find a point transformation that links
solutions of the unperturbed equation with the perturbed. Verily, the point transformation

x̃ = x+
k

2
t, t̃ = t, ũ = u+

k

2

does exactly that.
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Now we turn to constructing the conservation law. First let the formal Lagrangian,

L = υ(x, u)(ut + kux − utxx + 3uux − 2uxuxx − uuxxx). (9)

By using it we obtain the adjoint equation,

(3u− uxx + k) υx + υt = υxxxu+ υxxt + υxxux. (10)

By substituting υ = φ(x, u) + kϕ(x, u) into (10) and solving the resulted system we find that
φ(x, u) = c1 + c2u, ϕ(x, u) = c3 + c4u. Hence equation (1) is strictly self-adjoint in the approx-
imate context. An expected outcome since equation (1) is strictly self-adjoint in the classical
sense [12]. Putting now into the formula (8) the formal Lagrangian (9) with υ = u+ ku and the
only approximate symmetry of equation (1) that do not arise trivially from the classical sym-
metries of the unperturbed equation (2), (t∂t − u∂u)− k

2 (t∂x + ∂u), we obtain the approximate
conserved current:

C =

(
1

3
k
(
3u2 (6tut − 2tuxxt − 6uxx + 5)− u (3tut (4uxx − 3) + tuxxt + 12uxt + 4uxx) +

18u3 + tuxuxt − tutuxx − u2x
)

+ 2u
(
u (−tuxxt + 3tut − 3uxx) + 3u2 − 2 (tutuxx + uxt)

)
,

1

3
k
(
u (−6tuxxt + 6tut + 3) + 6u2 − tuxxt + tut − 2tuxuxx + 6u2x − 3uxx

)
+

2
(
tu (ut − uxxt) + u2 + u2x

))
. (11)

Verily,

DiC
i
∣∣
(1)

= −1

3
k2 (2ux (9u+ 3tut + 2) + t(6u+ 1)uxt) ≈ 0.

4 Concluding remarks

In the present work a well known equation was seen under a different viewpoint: we assumed
that the arbitrary parameter k of the Camassa–Holm equation (1) takes only small values hence
turning the equation into a perturbation problem. Having this as our starting point we found the
approximate symmetries and through them an approximate conservation law was constructed.

Conservation laws are an invaluable asset that not only provide new non trivial analytic
solutions but also can shed light to the stability and global behavior of the perturbed system and
lead to the development of new numerical schemes. In the same way, approximate conservation
laws can be an invaluable asset in the perturbation theory providing new numerical schemes and
new approximate more dynamic solutions.
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