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It is widely known that the Navier-Stokes equations encompass the mass and momentum prin-
ciples of Physics when modeling the flow of viscous Newtonian fluids. Assuming no gravitational
effects on steady-state incompressible flows, those equations can be written as

−∇p+ η∇2u+ ρF = 0, (1)

where ρ and η are the fluid’s density and dynamic viscosity, both assumed to be constant, p is
the pressure exerted on it, and vectors u and F represent the velocity and total externally applied
conservative force, respectively, as the fluid flows through the infinite channel depicted in figure 1.

Figure 1: Geometry of the channel of dimensions l × w × h where fluid of interest flows through.

Here an electrically nonconducting magnetic polarized fluid is investigated when submitted to
a force F originated from an applied magnetic field H, thereafter named ferrofluid [2]. Its response
to H introduces extra terms in (1) namely, from left to right, the Kelvin Force and torque term [1]:

0 = −∇ρ+ ν∇2u+ µ0M · ∇H +
1

2
µ0∇× (M×H), (2)

where the magnetic permeability of vacuum is µ0. Given its complexity, exact analytical solu-
tions of (2) are not available and certain simplifying hypotheses become mandatory in order to
understand the underlying dynamics. Thus assuming fluid velocity as bidirectional of the type
u = (u(x, y), v(x, y), 0) and pressure p of the form p = p(x, y, 0) and considering, for a moment,
complete absence of any magnetic field, we find out that v ≪ u, provided the narrow geometry
of the channel since h/l ≪ 1. Additionally, resorting to scale analysis (a very usual tool in fluid
dynamics), we can ascertain that ∂2u/∂x2 ≪ ∂2u/∂y2 and ∂2v/∂x2 ≪ ∂2v/∂y2, so horizontal and
vertical components of (2), respectively, result in −∂p/∂x + ν∂2/∂y2 = 0 and ∂p/∂y ≈ 0, and a
special unidirectional flow hypothesis is admitted with u = (u(x, y), 0, 0) and p = p(x, 0, 0). In the
case of a fully developed flow (when u is a function of y only) and non-slip boundary conditions
are met, i.e., u(x = 0, y = 0) = u(x = 0, y = h) = 0, we finally obtain d2u/dy2 = G/ν (where G
is the constant pressure gradient), which has the simple exact solution u(y) = (G/2ν)(y − h)y, a
parabolic velocity profile well known as Poiseuille flow.
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Turning back to the more interesting problem where H is indeed present, Maxwell’s equa-
tions must also be satisfied at the walls between the ferrofluid and surrounding media under null
boundary conditions for the transversal component of the magnetic flux density B and the tan-
gential component of H, where B = µ0(M + H) and M is the magnetization vector comprising
the ferrofluid’s full response to H. Shliomis [3] proposed an evolving equation for M given by

∂M

∂t
+ u · ∇M = −1

τ
(M−Meq) +

1

2
(∇× u)×M+

1

6ϕ

µ0

ν
(M×H)×M, (3)

where ϕ is the particle volume fraction, τ is the relaxation time and Meq = MSL(α)H/|H| is the
equilibrium magnetization vector which, in turn, depends on the saturation magnetization MS and
the Langevin function L(α) = cotgh(α) − 1/α, with α = m|H|/kBT , with m being the magnetic
momentum of the fluid’s particles, T its temperature and kB the Boltzmann constant.

It can be shown that using the aforementioned conditions impose several partial derivatives
in (2) and (3) to vanish and therefore, after applying the earlier unidirectional flow hypothesis,
magnetic field and magnetization vectors take the simplified form of H = (Hx,Hy(y), 0) and
M =

(
Mx(y),My(y), 0

)
, respectively, where subscripts emphasize the component directions.

It is desirable to make the resulting Navier-Stokes equations dimensionless by choosing proper
scales for selected variables. As such, we state the following discretionary set of scales {y ∼ h,
u ∼ U, p ∼ P,Hx,Hy,Mx,My ∼ H0}, where H0 = (H2

x +H2
y |y=0)

1/2 is the necessary constraint
that normalizes the peak value of H, P is the pressure scale drawn from Newton’s law of viscosity
τ = η du/dy, and U is the velocity scale chosen from the Poiseuille flow for the non-magnetic case.
The derived dimensionless parameteres are the Péclet number Pe = τ/(h/U), α0 = α/|H|, and
Gη = −Gh2/η = 8, assuring unitary maximum velocity halfway through the channel height h).

Dimensionless Navier-Stokes equations can then be presented as a set of two nonlinear algebraic
equations on the variables Mx and My and a second-order linear Boundary Value Problem on u as

Mx :
1

2
My

du

dy
+

1

2ϕ

(
α0

PeχM

)[
MxHy −MyHx

]
My −

1

Pe

[
Mx −Meqx

]
= 0

My : − 1

2
Mx

du

dy
− 1

2ϕ

(
α0

PeχM

)[
MxHy −MyHx

]
Mx − 1

Pe

[
My −Meqy

]
= 0

u :
d2u

dy2
+

3

2

(
α0

PeχM

)
d

dy

[
MxHy −MyHx

]
−Gη = 0, u(0) = u(1) = 0,

(4)

over the intervals 0 ≤ y ≤ 1, 0 ≤ Hx,Hy(y) ≤ 1, and 0 ≤ Mx,My ≤ ϕχM , where χM = MS/H0 is
the magnetic susceptibility, Meqx = ϕχML(α0H)Hx/|H|, and Meqy = ϕχML(α0H)Hy/|H|.

We aim at numerically solving our final model (4) by using a classic Newton-Raphson method
to calculate the local values of Mx and My from the algebraic 2 × 2 nonlinear system present in
the x- and y- directions above, and fulfilling the boundary conditions in the x-direction to solve
the differential equation using the shooting method.
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