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Resumo: In this work, we are interested in study the existence of limit cycles for the class of
continuous piecewise linear differential systems with three zones

x′ = X(x), (1)

where x = (x, y) ∈ R2, and X is a continuous piecewise linear vector field. For this, we make a
thorough analysis of the Poincaré map for such vector fields.
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1 Introduction

Due to the encouraging increase in their applications, control theory [5] and [9], design of electric
circuits [2], neurobiology [4] and [8] piecewise linear differential systems were studied early from
the point of view of qualitative theory of ordinary differential equations [1]. Nowadays, a lot of
papers are being devoted to these differential systems.

On the other hand, starting from linear theory, in order to capture nonlinear phenomena,
a natural step is to consider piecewise linear systems. As local linearizations are widely used
to study local behavior, global linearizations (achieved quite naturally by working with models
which are piecewise linear) can help to understand the richness of complex phenomena observed
in the nonlinear world.

The study of piecewise linear systems can be a difficult task that is not within the scope of
traditional nonlinear systems analysis techniques. In particular, a sound bifurcation theory is
lacking for such systems due to their nonsmooth character.

In this work, we study the existence of limit cycles for the class of continuous piecewise linear
differential systems

x′ = X(x), (2)

where x = (x, y) ∈ R2, and X is a continuous piecewise linear vector field.
We will consider the following situation, that we will name the three-zone case. We have two

parallel straight lines L− and L+ symmetric with respect to the origin dividing the phase plane
in three closed regions: R−, Ro and R+ with (0, 0) ∈ Ro and the regions R− and R+ have as
boundary the straight lines L− and L+ respectively. We will denote by X− the vector field X
restrict to R−, by Xo the vector field X restricted to Ro and by X+ the vector field X restrict
to R+. We suppose that the restriction of the vector field to each one of these zones are linear
systems with constant coefficients that are glued continuously at the common boundary.
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In short, system (2) can be written as

x′ =





A−x + B− x ∈ R−,
Aox + Bo x ∈ Ro,
A+x + B+ x ∈ R+,

(3)

where Ai ∈M2(R), i ∈ {−, o, +}, Bi ∈ R2, i ∈ {−, o, +} and x′ =
dx
dt

with t the time.

We say that the vector field Xi has a real equilibrium x∗ in Ri with i ∈ {−, o,+} if x∗ is an
equilibrium of Xi and x∗ ∈ Ri. In opposite we will say that Xi has a virtual equilibrium x∗ in
Ri if x∗ is an equilibrium of Xi and x∗ ∈ Rc

i , where Rc
i denotes the complementary of Ri in R2.

We suppose the following assumptions:

(H1) Xo has an equilibrium of focus type.

(H2) The others equilibria, of X− and X+, are a center and a focus with different stability with
respect to the focus of Xo.

We note that if the two equilibria of X− and X+ are both centers, or a center and a focus
having this focus the same stability than the focus of Xo, then the vector field X has no limit
cycles, for more details see Proposition 1.

We denote ti the trace of matrix Ai, and by di the determinant of the matrix Ai, for i ∈
{−, o, +}.
Proposition 1. If system (4) has a simple invariant closed curve Γ then

∫∫

Int−(Γ)
t−dxdy +

∫∫

Into(Γ)
todxdy+

∫∫

Int+(Γ)
t+dxdy = t−S− + toSo + t+S+ = 0,

where Int(Γ) is the open region limited by the closed Jordan curve Γ, Inti(Γ) = Int(Γ)∩Ri and
Si = area(Inti(Γ)) with i ∈ {−, o,+}.

As usual a limit cycle of (3) is a periodic orbit of (3) isolated in the set of all periodic orbits
of (3). A limit cycle is hyperbolic if the integral of the divergent of the system along it is different
from zero, for more details see for instance [3].

2 Normal Form

The next result give us system (3) in a convenient normal form where the number of parameters
are reduced, and consequently the computations of the Poincaré return map will be easier.

Lemma 2. Suppose that system (3) is such that det(Ao) > 0. Then there exists a linear change
of coordinates that writes system (3) into the form

ẋ = X(x),

with L− = L−1 = {x = −1}, L+ = L1 = {x = 1}, R− = {(x, y) ∈ R2; x ≤ −1}, Ro = {(x, y) ∈
R2; −1 ≤ x ≤ 1}, R+ = {(x, y) ∈ R2; x ≥ 1} and

X(x) =





A−x + B− x ∈ R−,
Aox + Bo x ∈ Ro,
A+x + B+ x ∈ R+,

(4)
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where A− =
(

a11 −1
1− b2 + d2 a1

)
, B− =

(
a11

d2

)
, Ao =

(
0 −1
1 a1

)
, Bo =

(
0
b2

)
, A+ =

(
c11 −1

1 + b2 − f2 a1

)
and B+ =

( −c11

f2

)
. The dot denotes derivative with respect to a new

time s.

Proof. By means of a rotation and a homothecy in the x direction we can write the system in
such a way that L− = L−1, L+ = L1. Now doing the change of coordinates given by u = x, v =
k1x + k2y + k3 and the time rescaling t = k4s with

k1 = − b11√
b11b22 − b12b21

, k2 = − b12√
b11b22 − b12b21

,

k3 = − e1√
b11b22 − b12b21

, k4 =
1√

b11b22 − b12b21
,

where bij , i, j = 1, 2 are the initial entries of the matrix Ao and Bo = (e1, e2), we have (4).

3 Poincaré map

For our purpose we will define a first return map that involves all the vector fields X−, Xo and
X+ in a suitable transversal section.

In [6] and [7], a necessary and sufficient condition for the existence of Poincaré maps from
the straight lines L± to the straight lines L± is that there exists a unique contact point of the
flow of the linear system with these lines. By contact point we mean a point of the line where
the vector field is tangent to it.

Lemma 3. In the coordinates given by Lemma 2 there is a unique contact point of system (4)
with L− and a unique contact point of (4) with L+. These points are respectively p− = (−1, 0)
and p+ = (1, 0). Moreover under the assumptions (H1) and (H2), we have

(i) if b2 < −1, the equilibriums points of X− and X0 are virtual and the equilibrium point of
X+ is real;

(ii) if b2 = −1, X0 and X+ have an equilibrium point at (1, 0), and X− has a virtual equilibrium
point;

(iii) if |b2| < 1, the equilibriums points of X− and X+ are virtual and the equilibrium point of
X0 is real;

(iv) if b2 = 1, X− and X0 have an equilibrium point at (−1, 0), and X+ has a virtual equilibrium
point;

(v) if b2 > 1, the equilibriums points of X0 and X+ are virtual and the equilibrium point of
X− is real.

In the rest, we are considering b2 < −1.
The Poincaré return map will be defined as the composition of four different Poincaré maps.

In what follows we study the qualitative behavior of each one of these maps separately in order
to understand the global behavior of the general Poincaré return map.

Let p− be the contact point of ẋ = A−x + B− with L−. Note that p− divides L− into
two segments LO− and LI− where in LO− the vector field points toward the region R− while in
LI− the vector field points toward the region Ro. In fact we have LO− = {(−1, y); y ≥ 0} and
LI− = {(−1, y); y ≤ 0}.

We can define a Poincaré map Π− : LO− → LI− by Π−(p) = q as the first return map in forward
time of the flow of ẋ = A−x + B− to L−, that is, if ϕ−(s, p) is the solution of ẋ = A−x + B−
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such that ϕ−(0, p) = p and p ∈ LO−, then q = ϕ−(s, p), s ≥ 0 such that q ∈ LI−. Observe that
Π−(p−) = p−.

We can see the mapping Π− in a different way as follows. Given, p ∈ LO− and q ∈ LI− there
exist unique a ≥ 0 and b ≥ 0 such that p = p− − aṗ− where ṗ− = X−(p−) = (0, b2 − 1), and
q = p− + bṗ−. So the mapping Π− induces a mapping π− given by π−(a) = b.

Note that to study the qualitative behavior of Π− is equivalent to study the qualitative
behavior of π−. From now on we will consider the map π− instead of Π−.

Note that we can define in the same way a map π+ associated to the a Poincaré map Π+ in
L+ considering the flow defined by ẋ = A+x + B+ and the contact point p+.

3.1 Different types of Poincaré maps

In what follows, we present the study of Poincaré return maps defined in each zone. We denote

the matrix A+ by A+ =
(

α+ −β+

β+ α+

)
, τ+ = β+s and γ+ = α+/β+.

Proposition 4. Consider the vector field X− in R− with a virtual center. Let π− be the
map associated to the Poincaré map Π− : L− → L− defined by the flow of the linear system
ẋ = A−x + B−, then π−(a) = −a.

Proposition 5. Consider the vector field X+ in R+ with a real focus equilibrium and such that
t+ > 0. Let π+ be the map associated to the Poincaré map Π+ : L+ → L+ defined by the flow of
the linear system ẋ = A+x + B+.

(a) If t+ > 0 then the maps π+ satisfy that π+ : [0,∞) → [b∗,∞), π+(0) = b∗ > 0,
lim

a→∞π+(a) = +∞ and π+(a) > a in (0,∞).

(a.1) If a ∈ (0,∞) then (π+)′(a) =
a

π+(a)
e2γ+τ+ . Moreover (π+)′(a) > 0 and lim

a→0
(π+)′(a) =

0.

(a.2) If a ∈ (0,∞) then (π+)′′(a) > 0.

(a.3) The straight line b = eγ+πa+t+(1+eγ+π)/d+ in the plane (a, b) is an asymptote of the

graph of π+ when a tends to +∞ where γ+ = t+/
√

4d+ − t2+. So lim
a→∞(π+)′(a) = eγ+π.

Proof. Let p+ be the contact point of the flow with L+ and p and q as described above. As
q is in the orbit of p in the forward time we have that q = ϕ(s, p) with s ≥ 0. Moreover for
computing the map π+ we can suppose that the real equilibrium is at the origin and that matrix
A+ is in its real Jordan normal form.

Let p∗+ be the contact point p+ in the coordinates in which A+ is in its real Jordan normal
form and the virtual equilibrium of X+ is at the origin. We denote by ṗ∗+ = X+(p∗+). So we can
write

q = ϕ+(s, p) = eA+sp.

As p = p∗+ + aṗ∗+ and q = p∗+ − π+(a)ṗ∗+ we obtain

p∗+ − π+(a)ṗ∗+ = eA+s(p∗+ + aṗ∗+).

Now using the fact that ṗ∗+ = A+p∗+ we have

(Id− π+(a)A+)p∗+ = eA+s(Id + aA+)p∗+, (5)

where a ≥ 0, π+(a) ≥ 0, s ≥ 0 and the matrix A+ is given by A+ =
(

α+ −β+

β+ α+

)
with

α+ =
t+
2

. Since p∗+ 6= (0, 0) we obtain from equation (5) that b = π+(a) is defined by the system

1− bα+= eα+s(cos(β+s) + a[α+ cos(β+s)− β+ sin(β+s)]),

bβ+= −eα+s(sin(β+s) + a[α+ sin(β+s) + β+ cos(β+s)]),
(6)
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and the inequalities a ≥ 0, b ≥ 0 and s ≥ 0.
Let be π+(0) = b∗, we have that b∗ > 0. Moreover if a = ao, b = bo and s = so is a solution

of (6), then so is the flight time between the points p = p∗+ + aṗ∗+ and q = p∗+ − bṗ∗+.
Define τ+ = β+s and γ+ = α+/β+. Solving system (6) with respect to τ+ we obtain the

following parametric equations for π+(a) = b,

a(τ+) = −β+e−γ+τ+

d+ sin τ+
ϕ(τ+, γ+) and

b(τ+) = − β+eγ+τ+

d+ sin τ+
ϕ(τ+,−γ+),

(7)

where ϕ is the function given by ϕ(x, y) = 1 − exy(cosx − y sinx). Since A is given in its real
Jordan normal form, τ+ is the angle covered by the solution during the flight time s. Hence we
conclude that τ+ ∈ (π, τ∗), where τ∗ < 2π. Note that τ∗ is the angle covered by the solution
during the flight time s∗, i.e. es∗Ap∗+ = Π+(p∗+).

Now since lim
τ+→π+

a(τ+) = +∞ and lim
τ+→π+

b(τ+) = +∞ it follows that the domain of definition

of π+ is [0, +∞) and lim
a→∞π+(a) = +∞.

Moreover when τ+ ∈ (π, τ∗) we have

b(τ+)− a(τ+) = − 2β+

d+ sin τ+
(sinh(γ+τ+)− γ+ sin τ+).

Since sinh(γ+τ+) > γ+ sin τ+ when τ+ ∈ (π, τ∗), we conclude from the expression above that
b(τ+) > a(τ+) if τ+ ∈ (π, τ∗). Therefore π+(a) > a in (0,+∞). So statement (a) is proved.

Derivating (7) with respect to τ+ it follows that

da

dτ+
= − β+

d+ sin2 τ+
ϕ(τ+,−γ+) and

db

dτ+
= − β+

d+ sin2 τ+
ϕ(τ+, γ+).

Thus (π+)′(a) =
ϕ(τ+, γ+)

ϕ(τ+,−γ+)
=

a

b
e2γ+τ+ and lim

a→0
(π+)′(a) = 0, because lim

a→0
b = lim

a→0
π+(a) =

b∗ 6= 0. Therefore substatement (a.1) is proved.
Now we observe that

(π+)′′(a) =
d

dτ+

(
db

da

)
1
da

dτ+

= −2d+(1 + γ2
+) sin3 τ+

β+ϕ(τ+,−γ+)3
(sinh(γ+τ+)− γ+ sin τ+) > 0.

Therefore substatement (a.2) follows.
From expression (7) it follows that

lim
a→∞

π+(a)
a

= lim
τ+→π

b(τ+)
a(τ+)

= lim
τ+→π

e2γ+τ+ ϕ(τ+,−γ+)
ϕ(τ+, γ+)

= eγ+π.

On the other hand by applying the L’Hôptal’s rule it is easy to check that lim
a→+∞(π+(a) −

eγ+πa) = t(1 + eγ+π)/d, which implies that the straight line b = eγ+πa + t(1 + eγ+π)/d is an
asymptote of the graph of π+(a), we obtain substatement (a.3).

Proposition 6. Consider the vector field X+ in R+ with a real focus equilibrium and such that
t+ < 0. Let π+ be the map associated to the Poincaré map Π+ : L+ → L+ defined by the flow of
the linear system ẋ = A+x + B+.
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(a) Then the maps π+ satisfy that π+ : [a∗,∞) → [0,∞), π+(a∗) = 0, lim
a→∞π+(a) = +∞ and

π+(a) < a in (a∗,∞).

(a.1) If a ∈ (a∗,∞) then (π+)′(a) =
a

π+(a)
e2γ+τ+ . Moreover (π+)′(a) > 0 and lim

a→a∗
(π+)′(a) =

+∞.

(a.2) If a ∈ (a∗,∞) then (π+)′′(a) < 0.

(a.3) The straight line b = eγ+πa+t+(1+eγ+π)/d+ in the plane (a, b) is an asymptote of the

graph of π+ when a tends to +∞ where γ+ = t+/
√

4d+ − t2+. So lim
a→∞(π+)′(a) = eγ+π.

Proof. The proof follows in a similar way to the proof of Proposition 5.

Proposition 7. Consider the vector field Xo in Ro with a virtual focus equilibrium. Let πo be
the map associated to the Poincaré map Πo : D∗

o ⊂ L− → L+ defined by the flow of the linear
system ẋ = Aox + Bo from the straight line L− to the straight line L+.

(a) Then the map πo satisfies that πo : [0,∞) → [c∗,∞), c∗ > 0 with πo(0) = c∗ and
lim

b→∞
πo(b) = +∞.

(b) If b ∈ [0,∞) then π′o(b) = (1− b2)
2 e2γoτo

b

πo(b)
, with τo → 0 when b →∞ and lim

b→∞
π′o(b) =

b2 − 1.

Proposition 8. Consider the vector field Xo in Ro with a virtual focus equilibrium. Let π̄o be
the map associated to the Poincaré map Π̄o : D̄∗

o ⊂ L+ → L− defined by the flow of the linear
system ẋ = Aox + Bo from the straight line L+ to the straight line L−.

(a) Then the map π̄o satisfies that π̄o : [d∗,∞) → [0,∞), d∗ > 0 with π̄o(d∗) = 0 and
lim

d→∞
π̄o(d) = +∞.

(b) If d ∈ (d∗,∞) then π̄′o(d) = π̄′o(d) = (b2 + 1)2 e2γoτo
d

π̄o(d)
, with τo → 0 when d → ∞ and

lim
d→∞

π̄′o(b) = b2 + 1 and lim
d→d∗

π̄′o(d) = ∞.

4 Limit cycles when Xo has a virtual focus in R+

In what follows without loss of generality we will suppose that the focus of hypothesis (H2) is
in R+.

Proposition 9. Assume that system (4) satisfies assumptions (H1) and (H2) and b2 < −1.
Then there exists a unique limit cycle of (4), which is hyperbolic. Moreover this limit cycle visits
the three regions R−, Ro and R+. It is a repeller if to < 0, and an attractor if to > 0.

Proof. We will give a sketch of proof.
Suppose that X− has a virtual center and Xo has a virtual focus.
Using the previous notation we have γi =

αi

βi
, i ∈ {−, o, +}. So γ− = 0 and γo, γ+ 6= 0. The

domain of the first return map Π defined by

Π = πo ◦ π− ◦ π̄o ◦ π+

is an interval of R+ that depends on the domain of the mapping π+ and π̄o stated in Propositions
5, 6 and 8.
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Suppose that γo > 0 and γ+ < 0. In this case D̄o(π̄o) = [d∗,∞) where d∗ ≥ 0 and π̄o(d∗) = 0.
This implies that D(Π) = [k∗,∞) where k∗ = π−1

+ (d∗). Moreover we have Π : [k∗,∞) → [c∗,∞)
where Π(k∗) = c∗ = πo(0).

Define the displacement function

h(a) = Π(a)− a.

Note that finding a fixed point of Π is equivalent to find zeroes of the function h.
The objective is to study the nature of the application Π and shown that this application is

monotone in its domain. For this, we use that Π′ = π′o(π− ◦ π̄o ◦ π+) · π′−(π̄o ◦ π+) · π̄′o(π+) · π′+
and the expressions of each of its derivatives and signals given by the propositions 4, 5, 6, 7 and
8. Therefore, we conclude that if Π has a fixed point, it is unique.
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