On Bivariate Orthogonal Polynomials for Freud Weight Functions

Glalco S. Costa ${ }^{1}$
UFTM - ICTE, Uberaba, MG
Cleonice F. Bracciali ${ }^{2}$
UNESP - IBILCE, São José do Rio Preto, SP
Teresa E. Pérez ${ }^{3}$
Universidade de Granada, Granada, Espanha

Orthogonal polynomials with respect to the weight function in one variable $w(x)=|x|^{\rho}$ $\exp \left(-|x|^{m}\right), \rho>-1, m>0$, was first studied by Géza Freud, [2]. A symmetric Freud weight function in one variable is usually given by

$$
\begin{equation*}
w_{t}(x)=e^{-x^{4}+t x^{2}}, \quad x \in \mathbb{R} \tag{1}
\end{equation*}
$$

where t is a real parameter. The corresponding moments exist, depend on t and are given by $\mu_{k}(t)=\int_{-\infty}^{+\infty} x^{k} e^{-x^{4}+t x^{2}} d x$, for $k=0,1, \ldots$.

Therefore, the sequence of orthonormal polynomials with respect to $w_{t}(x)$ are polynomials on the variable x whose coefficients depend on t, that we denote by $\left\{p_{n}(x, t)\right\}_{n \geqslant 0}$, they satisfy

$$
\int_{-\infty}^{+\infty} p_{n}(x, t) p_{m}(x, t) w_{t}(x) d x=\delta_{n, m}
$$

where $\delta_{n, m}$ are the Kronecker's delta. These polynomials satisfy the three term recurrence relation of the form

$$
x p_{n}(x, t)=a_{n}(t) p_{n+1}(x, t)+a_{n-1}(t) p_{n-1}(x, t), \quad n \geqslant 0,
$$

with $p_{-1}(x, t)=0$ and $p_{0}(x, t)=\mu_{0}(t)^{-1 / 2}$.
The coefficients $a_{n}(t)$ satisfy the nonlinear difference equation

$$
\begin{equation*}
4 a_{n}^{2}(t)\left[a_{n+1}^{2}(t)+a_{n}^{2}(t)+a_{n-1}^{2}(t)\right]-2 t a_{n}^{2}(t)=n+1, \quad n \geqslant 0, \tag{2}
\end{equation*}
$$

where $a_{0}^{2}(t)=\mu_{2}(t) / \mu_{0}(t)$ and $a_{-1}(t)=0$ (see [1, 3]). The difference equation (2) coincides with the discrete Painlevé equation dP_{I}

$$
x_{n}\left(x_{n+1}+x_{n}+x_{n-1}\right)-\delta x_{n}=\alpha n+\beta+(-1)^{n} \gamma,
$$

with $x_{n}=a_{n}^{2}(t), \alpha=\beta=1 / 4, \gamma=0, \delta=t / 2$.
The connection between the coefficients of the three term recurrence relation for orthogonal polynomials in one variable and Painlevé equations is very well known (see for example, [4]).

[^0]In this work we deal with the system of orthonormal polynomials in two variables $\left\{\mathbb{P}_{n}\right\}_{n \geq 0}$ given by

$$
\mathbb{P}_{n}(x, y)=\left(\begin{array}{c}
p_{n, 0}(x, y) \\
p_{n-1,1}(x, y) \\
\vdots \\
p_{1, n-1}(x, y) \\
p_{0, n}(x, y)
\end{array}\right)
$$

where $\left\{p_{m-k, k}(x, y)\right\}_{k=0}^{n}$ is a set of linear indepent polynomials of degree n.
The relation of orthonormality for $\left\{\mathbb{P}_{n}\right\}_{n \geq 0}$ is given by

$$
<\mathbb{P}_{n}, \mathbb{P}_{m}^{T}>=\left(h_{i j}\right)_{(n+1) \times(m+1)}= \begin{cases}I_{n+1, n+1}, & \text { if } n=m \\ {[0]_{n+1 \times m+1},} & \text { if } n \neq m\end{cases}
$$

where [0] is the null matrix, for $i=1, \ldots, n+1$ and $j=1, \ldots, m+1$

$$
h_{i j}=\int_{\mathbb{R}} \int_{\mathbb{R}} p_{n+1-i, i-1}(x, y) p_{m+1-j, j-1}(x, y) W(x, y) d x d y
$$

and $W(x, y)$ is a weight function in two variables.
Here we consider the weight function

$$
W(x, y)=e^{-q(x, y)}, \quad(x, y) \in \mathbb{R}^{2}
$$

with $q(x, y)=a_{4,0} x^{4}+a_{2,2} x^{2} y^{2}+a_{0,4} y^{4}+a_{2,0} x^{2}+a_{0,2} y^{2}$ and $a_{i, j}$ are real parameters and the moments are defined by $\mu_{m, n}=\int_{\mathbb{R}} \int_{\mathbb{R}} x^{n} y^{m} W(x, y) d x d y$, for $n, m \in \mathbb{N}$.

The system of orthonormal polynomials $\left\{\mathbb{P}_{n}\right\}_{n \geq 0}$ satisfies the three term relations

$$
\begin{aligned}
x \mathbb{P}_{n} & =A_{n, 1} \mathbb{P}_{n+1}+A_{n-1,1}^{T} \mathbb{P}_{n-1}, \\
y \mathbb{P}_{n} & =A_{n, 2} \mathbb{P}_{n+1}+A_{n-1,2}^{T} \mathbb{P}_{n-1},
\end{aligned}
$$

for $n \in \mathbb{N}$, with $\mathbb{P}_{-1}=0, \mathbb{P}_{0}=\mu_{0,0}^{-1 / 2}$ and the coefficients $A_{n, i}, i=1,2$, are full ranked $(n+1) \times(n+2)$ matrices.

We analyse this system of bivariate orthonormal polynomials with respect to $W(x, y)$ and extend the difference equation (2) for the matrix coefficients of the three term relations of these polynomials, when $a_{2,0}=a_{0,2}=-t$,

Referências

[1] S. Belmehdi e A. Ronveaux. "Laguerre-Freud's equations for the recurrence coefficients of semi-classical orthogonal polynomials". Em: Journal of Approximation Theory 76 (1994), pp. 351-368.
[2] G. Freud. "On the coefficients in the recursion formulae of orthogonal polynomials". Em: Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences 76 (1976), pp. 1-6. DOI: 10.2307/20489026.
[3] A. Magnus. "On Freud's equations for exponential weights". Em: Journal of Approximation Theory 46 (1986), pp. 65-99. DOI: 10.1016/0021-9045(86)90088-2.
[4] W. Van Assche. Orthogonal Polynomials and Painlevé Equations. Cambridge University Press, 2018. ISBN: 978-1-108-44194-0.

[^0]: ${ }^{1}$ glalco.costa@uftm.edu.br
 ${ }^{2}$ cleonice.bracciali@unesp.br
 ${ }^{3}$ tperez@ugr.es

