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Resumo: We obtain explicit formulas for the eigenvalues of integral operators generated by
continuous dot product kernels defined on the sphere via the usual gamma function. Using them,
we present both, a procedure to describe sharp bounds for the eigenvalues and their asymptotic
behavior near 0. We illustrate our results with examples, among them the integral operator gen-
erated by a Gaussian kernel .
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1 Introduction

Let Sm (m ≥ 2) be the unit sphere in Rm+1 endowed with its induced Lebesgue measure
σm and write L2(Sm) := L2(Sm, σm). In this work we deal with (compact) integral operators
K : L2(Sm)→ L2(Sm) of the form

K(f)(x) =

∫
Sm

( ∞∑
n=0

bn(x · y)n

)
f(y) dσm(y), x ∈ Sm, f ∈ L2(Sm), (1)

in which {bn} is an absolutely summable sequence of complex numbers. The symbol · stands for
the usual inner product of Rm+1. Kernels of the form

K(x, y) =

∞∑
n=0

bn(x · y)n, x, y ∈ Sm, (2)

with
∑∞

n=0 |bn| < ∞, will be called dot product kernels on Sm. They are bi-zonal in the sense
that

K(x, y) = K ′(x · y), x, y ∈ Sm,
for some convenient function K ′ : [0, 1]→ C. In particular, every positive definite kernel on the
Hilbert sphere of the usual space `2, as characterized in the early forties by Schoenberg ([15])
is a dot product kernel on every Sm. An eminent example from this category is the Gaussian
kernel

exp(−d‖x− y‖2) = e−2d
∞∑
n=0

(2d)n

n!
(x · y)n, x, y ∈ Sm, d > 0,

a common entity in many branches of mathematics, including radial basis interpolation, learning
theory, support vector machines, regularization networks and Gaussian processes ([9, 14, 18]).
In the above formula, ‖ · ‖ stands for the usual norm in Rm+1.
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Kernels as those described in the previous paragraph belong to a larger class of kernels,
namely, that of the power series kernels ([18]). Indeed, the multinomial theorem leads to the
formula

∞∑
n=0

bn(x · y)n =
∑

α∈Zm+1
+

aαx
αyα, x, y ∈ Sm,

where

aα =
b|α||α|!
α!

, α = (α1, ..., αm+1) ∈ Zm+1
+ ,

|α| =
∑m+1

i=1 αi and α! = α1!...αm+1! for all α ∈ Zm+1
+ .

The search for bounds of eigenvalues or singular values of integral operators is a classical and
prolific topic in functional analysis ([6, 8, 13]) with applications in many areas of mathematics.
Mercer’s theorem provides a direct connection of the subject with smoothness properties of
positive definite kernels, a topic of relative importance in reproducing kernel Hilbert space theory.
In another front, the same bounds are useful in error estimates for approximation problems in
learning theory ([4, 11, 16]).

In the spherical setting we are considering here, the eigenvalue analysis of a compact integral
operator usually takes place in the case when the operator itself is positive and the generating
kernel is smooth. Smoothness is usually defined by a closed assumption on the generating kernel
itself or some of its derivatives but may also be described by a Hölder or Lipschitz type condition.
The goal is then to deduce decay rates for the sequence of eigenvalues of the integral operator
and try to reach optimality of the decay. We refer the reader to [3, 5, 10] and references therein
for some recent results on that stream.

The focus in the present work is to deduce sharp bounds for the eigenvalues of the integral
operator (1). They will be obtained through an explicit formula to compute such eigenvalues
based on certain numerical series involving the usual gamma function. The formulas are de-
scribed in Section 2 while the bounds are deduced in Section 3. These bounds can be seen as
generalizations of those obtained in [11], in the case when the generating kernel is a Gaussian
one. The results have a close connection with some previous information on eigenvalue decay of
integral operators we have obtained in [2]. Finally, we like to think that the results have connec-
tions with those in [17], where the decay for Gegenbauer coefficients of the restriction of usual
positive definite radial basis functions to Sm were considered. As an application, in Section 4,
we recast the case in which the kernel (2) is a Gaussian kernel.

2 Computing the eigenvalues of the integral operator

In this section, we find a closed formula to compute the eigenvalues of the integral operator K
introduced in (1). In order to do that we need to invoke a few facts from harmonic analysis on
the sphere ([7, 12]).

For any function F : [−1, 1]→ C satisfying∫ 1

−1
|F (t)|(1− t2)(m−2)/2dt <∞,

and any spherical harmonic Yk of degree k in m + 1 dimensions, the Funk-Hecke formula ([7,
p.98]) states that ∫

Sm

F (x · y)Yk(y) dσm(y) = λk(F )Yk(x), x ∈ Sm,

in which

λk(F ) = σm−1

∫ 1

−1
F (t)Pmk (t)(1− t)(m−2)/2 dt,

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 3, N. 1, 2015.

DOI: 10.5540/03.2015.003.01.0039 010039-2 © 2015 SBMAC

http://dx.doi.org/10.5540/03.2015.003.01.0039


Pmk is the Legendre polynomial of degree k associated to the dimension m and σm−1 is the
surface area of Sm−1.

Rodrigues formula for the Legendre polynomials ([12, p.23]) reads as follows∫ 1

−1
f(t)Pmk (t)(1− t2)(m−2)/2 dt =

1

2k
Γ(m/2)

Γ(k +m/2)

∫ 1

−1
f (k)(t)(1− t2)k+(m−2)/2 dt,

whenever f is a function of class Ck in [−1, 1]. In particular,∫ 1

−1
tnPmk (t)(1− t2)(m−2)/2 dt =

1

2k
Γ(m/2)

Γ(k +m/2)

∫ 1

−1

n!

(n− k)!
tn−k(1− t2)k+(m−2)/2 dt, n = 0, 1, . . . .

If n−k is odd, then tn−k(1− t2)k+(m−2)/2 is an odd function of t and, consequently, the integral
in the right-hand side of the above equality vanishes. If n− k is even and nonnegative, then∫ 1

−1
tn−kPmk (t)(1− t2)k+(m−2)/2 dt =

1

2

∫ 1

0
u(n−k−1)/2(1− u)k+(m−2)/2 du

=
1

2
B((n− k + 1)/2, k +m/2),

in which B is the usual beta function given by the formula

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
, Rex,Re y ∈ (0,∞).

Here, Γ stands for the usual gamma function.
Below, we will write Hm+1

k to denote the space of all spherical harmonics of degree k in m+1
variables with respect to the inner product of L2(Sm). An orthonormal basis of Hm+1

k will be
written as {Yk,l : k = 0, 1, 2, ...; j = 1, ..., N(k,m+ 1)}.
Theorem Let K be as in (1). Then each Yk,j is an eigenfunction of K with associated eigenvalue
given by the formula

λk(K) =
σm−1Γ(m/2)

2k+1

∞∑
s=0

b2s+k
(2s+ k)!

(2s)!

Γ (s+ 1/2)

Γ (s+ k + (m+ 1)/2)
, k ∈ Z+.

Proof Let us fix Yk,j ∈ Hm+1
k . The summability of {bn} and the Funk-Hecke formula ensure

that

K(Yk,j) =

(
σm−1

∞∑
n=0

bn

∫ 1

−1
tnPmk (t)(1− t2)(m−2)/2 dt

)
Yk,j .

In particular, Yk,j is an eigenfunction of K with corresponding eigenvalue

λk(K) := σm−1

∞∑
n=0

bn

∫ 1

−1
tnPmk (t)(1− t2)(m−2)/2 dt.

We observe that the integral appearing in the series above can be bounded by a number not
depending on n so that the series is, indeed, convergent. Due to the comments preceding the
theorem, it is now clear that

λk(K) =
σm−1Γ(m/2)

2k+1

∞∑
s=0

b2s+k
(2s+ k)!

(2s)!

Γ(s+ 1/2)

Γ(s+ k + (m+ 1)/2)
.
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This concludes the proof of the theorem.
Clearly, the previous theorem implies that λk(K) is an eigenvalue of K of multiplicity

N(k,m + 1). Before we proceed with our intended target, that is, the bounding of the indi-
vidual eigenvalues, we will detach a consequence of the previous theorem. It asserts that the
nonincreasingness of the sequence {bn} suffices for the sequence of eigenvalues of K to match
the outcome of the spectral theorem for compact operators on a Hilbert space.
Corolary Let K be as in (1). If {bn} is a non increasing sequence of real numbers then {λk(K)}
decreases.
Proof For a fixed k, it is easily seen that

(2s+ k)!

Γ(s+ k + (m+ 1)/2)
>

(2s+ k + 1)!

Γ(s+ k + 1 + (m+ 1)/2)
, s = 0, 1, . . .

Using this inequality and the non increasingness of {bn} to estimate λk+1(K) leads to the in-
equality λk(K) ≥ λk+1(K), k = 0, 1, . . ., with equality only when all the bn are 0.

We observe that the sequence mentioned in the previous result is not the sequence of eigenval-
ues of K, since it does not take into account the multiplicities. However, the property obviously
holds for the sequence of eigenvalues too.

At this point, it is interesting to observe that in some cases, Mercer’s theorem ensures not
only the non increasingness of the sequence of eigenvalues of K but also their summability
(including multiplicities).

The closing result of the section describes a convenient lower bound for λk(K) to be invoked
later.
Corolary Let K be as in (1). If {bk} is a sequence of nonnegative numbers, then there exists a
positive constant C, depending upon m only, so that

λk(K) ≥ C bk
2k+1

k!

Γ(k + (m+ 1)/2)
, k ∈ Z+.

Proof If each bk is nonnegative, then the series in the expression for λk(K) obtained in the
previous theorem is composed of nonnegative terms. As so, we can replace the whole series with
its first term (s = 0) to deduce that

λk(K) ≥ σm−1Γ(1/2)Γ(m/2)
bk

2k+1

k!

Γ(k + (m+ 1)/2)
, k ∈ Z+.

The result follows.

3 Estimates for the eigenvalues

In this section, we intend to deduce upper bounds for λk(K). Due to the nontrivial nature of
the formula deduced in the previous section, sharp bounds will demand additional information
on the sequence {bn}. Below, we introduce notation and the additional requirement (decay) we
will adopt for the sequence {bn}.

If {an} and {cn} are sequences of positive real numbers, as usual, an = O(cn) as n → ∞,
will mean that {anc−1n } is bounded. On the other hand, an ∼ cn, as n → ∞, will mean that
limn→∞ an/cn = 1, while an � cn, as n → ∞, will mean that an = O(cn) and cn = O(an), as
n→∞.

The lemma below describes an estimation for the series in the expression that defines λk(K)
when a decay for {bn} is available. We recall that

θk,s := b2s+k
(2s+ k)!

(2s)!

Γ (s+ 1/2)

Γ(s+ k + (m+ 1)/2)
, k, s ∈ Z+.

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 3, N. 1, 2015.

DOI: 10.5540/03.2015.003.01.0039 010039-4 © 2015 SBMAC

http://dx.doi.org/10.5540/03.2015.003.01.0039


Lemma Let K be as in (1) and δ > 1/2. If

|bn|
|bn−1|

= O(n−δ), (n→∞), (3)

then there exists a positive real number γ so that

∞∑
s=0

|θk,s| ≤ |θk,0|
∞∑
s=0

γ2s

4δs(s!)2δ
, k ∈ Z+.

The proposition below is a crude estimation for the eigenvalues of K under the decay as-
sumption (3).
Proposition Let K be as in (1) and δ > 1/2. If (3) holds, then

|λk(K)| ≤ σm−1
Γ(1/2)Γ(m/2)

Γ(k + (m+ 1)/2)

k!

2k+1

( ∞∑
s=0

γ2s

4δs(s!)2δ

)
|bk|, k ∈ Z+.

Theorem Let K be as in (1) and δ > 1/2. If (3) holds and {bn} is a sequence of nonnegative
numbers, then

λk(K) � bk
2k+1k(m−1)/2

, (k →∞).

Proof. We know from the previous results that there exists a positive constant C, depending
upon m only, so that

C
k!

Γ(k + (m+ 1)/2)

bk
2k+1

≤ λk(K) ≤ C

( ∞∑
s=0

γ2s

4δs(s!)2δ

)
k!

Γ(k + (m+ 1)/2)

bk
2k+1

,

for all k ∈ Z+. An application of the Stirling’s approximation formula

Γ(x) ∼
√

2π xx−1/2e−x, (Rex→∞),

yield the asymptotic formula

k!

Γ(k + (m+ 1)/2)
∼ e(m+1)/2

(
1 +

−(m+ 1)/2

k + (m+ 1)/2

)k k1/2

(k + (m+ 1)/2)m/2
,

as k →∞. Since k ∼ k + (m+ 1)/2 as k →∞, it follows that

k!

Γ(k + (m+ 1)/2)
∼ 1

k(m−1)/2
, (k →∞).

The asymptotic information in the statement of the theorem follows.
Example (Gaussian kernel) For r ∈ (0,∞) fixed, consider the kernel

K(x, y) = er/2 exp

(
−||x− y||

2

r

)
, x, y ∈ Sm.

Since ‖x− y‖2 = 2− 2(x · y), x, y ∈ Sm, the previous formula can be re-written as

K(x, y) =

∞∑
n=0

2n

n!rn
(x · y)n, x, y ∈ Sm.

Since bn = 2nr−n/n! > 0, n = 0, 1, . . ., assumption (3) holds with δ = 1. As so, the previous
Theorem implies that

λk(K) � 1

2rk k!k(m−1)/2
, (k →∞),

while Stirling’s approximation formula leads to

λk(K) � (e/r)k

kk+m/2
, (k →∞).

The estimates obtained above match those derived in Theorem 2 of [11].
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